Rare Earth System Emerging at Innouendy

Exploration Update

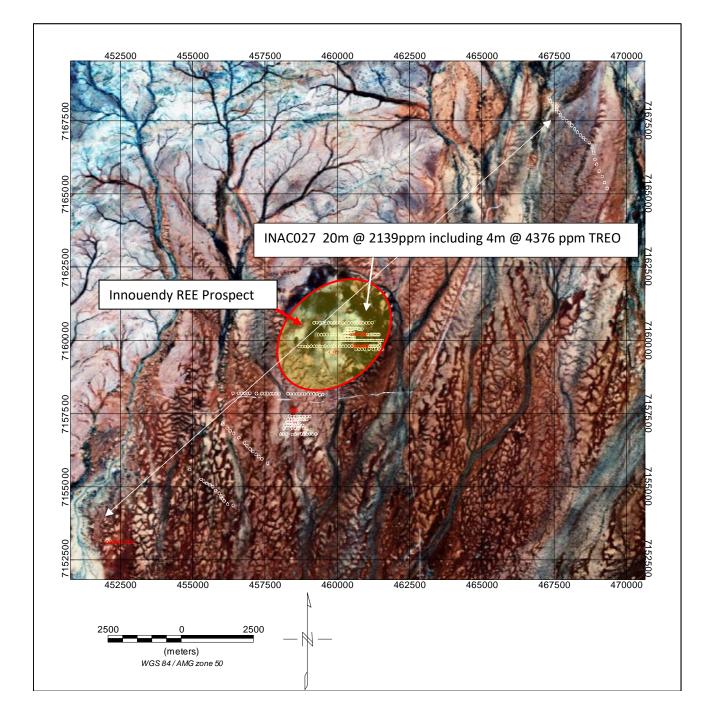
• Follow-up drilling at the Innouendy Rare Earth Project in WA, comprising an additional 265 aircore holes for 10,909m and 13 RC holes for 1,836m, has now been completed.

ETALS

Limited

- Initial XRF and visual observations are encouraging and suggest the possibility of an extensive, near surface, rare earth system:
 - Clays which host the mineralisation start close to surface and have been intersected up to 80m thick in parts. Step out drilling traverses across 20km of strike length have intersected both thick clays and large volumes of mafic and ultramafic rock, lab analysis will determine whether these units host significant mineralisation.
- The drilling program was designed to follow up the recent high-grade mineralisation, including an intercept of 20m @ 2139ppm from 16m, including 4m @ 4376ppm Total Rare Earth Oxide.
- Samples are currently being submitted to the lab for analysis.

Desert Metals (the Company or DM1) is pleased to provide an update on exploration activities on its licenses in the Narryer Terrane.


A 12,745m drilling program using both aircore (AC) and reverse circulation (RC) drill rigs has been completed on the Company's 100% owned Innouendy license (Table 1). The aircore program has predominantly followed up on rare earth intersections (up to 20m @ 2139ppm from 16m, including 4m @ 4376ppm Total Rare Earth Oxide) within saprolitic clays close to surface. (DM1: ASX release 19 July). The drilling intersected encouraging thicknesses of clays (up to 80m thick, average hole depth 41m) across an extensive area surrounding the previously reported REE mineralisation (Figure 1). If the high value REE grades previously reported are repeated over significant downhole thickness and areal extent, analysis from the current drilling program will be used to help define a resource. Samples are currently being sent to the lab for analysis. See Figure 1 for the location of drill holes.

The aircore drill program also included a number regional reconnaissance traverses to test the extent of nickel prospective ultramafic/mafic rocks under cover. The Company has now confirmed the presence of extensive mafic/ultramafic intrusion(s) over a strike length in excess of 20km.

The reverse circulation drilling was focussed on following up recent promising nickel (Ni) and platinumpalladium (PGE) intercepts, including 4m @1.76% Ni within a 12m zone @1.17%. The program consisted of 13 holes with an average depth of 141m. Samples have been sent to the lab for assay.

Downhole EM (DHEM) is due to be collected on holes drilled at the Belele and Dingo Pass nickel-copper sulphide projects in the next couple of weeks. Drilling of off-hole conductors will follow as soon as possible after the DHEM has been completed.

Figure 1 Location of aircore and RC holes at Innouendy. Red collars previously reported, white collars from current program with analysis pending. Current drilling program extends across greater than 20km. Background image Sentinel RGB =432 ternary image.

DESERT

Limited

ASX RELEASE 30 AUGUST 2022

Authorised by the Board of Desert Metals Limited.

Rob Stuart Tony Worth

Managing Director **Technical Director**

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Dr Rob Stuart, a competent person who is a member of the Australasian Institute of Mining and Metallurgy. Dr Stuart has a minimum of five years' experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a competent person as defined in the 2012 Edition of the Joint Ore Reserves. Dr Stuart is a related party of the Company, being a Director, and holds securities in the Company. Dr Stuart has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Table 1. Locations of New Drilling at Innouendy

Hole ID	Easting	Northing	RL		Depth	Project	Dip	Azimuth
INRC009	459849	7159601		370	132	Jarra	-61	93
INRC010	459799	7159604		370	100	Jarra	-59	93
INRC011	459741	7159592		370	142	Jarra	-60	91
INRC012	458451	7157198		367	112	Stockyard	-61	96
INRC013	458401	7157197		366	150	Stockyard	-60	93
INRC014	458349	7157202		366	150	Stockyard	-61	91
INRC015	458446	7156999		366	150	Stockyard	-61	89
INRC016	458652	7156993		365	150	Stockyard	-61	89
INRC017	458552	7156994		366	150	Stockyard	-61	89
INRC018	458598	7157098		364	150	Stockyard	-61	90
INRC019	458546	7157100		365	150	Stockyard	-60	92
INRC020	458499	7157100		366	150	Stockyard	-59	100
INRC021	458499	7157199		368	150	Stockyard	-61	89
INAC049	461209	7160607		380	38	Innouendy	-60	90
INAC050	461102	7160601		377	40	Innouendy	-60	90
INAC051	461004	7160602		378	41	Innouendy	-60	90
INAC052	460898	7160595		379	45	Innouendy	-60	90
INAC053	460796	7160601		385	32	Innouendy	-60	90
INAC054	460698	7160600		380	33	Innouendy	-60	90
INAC055	460599	7160598		381	26	Innouendy	-60	90
INAC056	460500	7160600		382	48	Innouendy	-60	90
INAC057	460401	7160600		381	18	Innouendy	-60	90
INAC058	460301	7160596		378	11	Innouendy	-60	90
INAC059	460196	7160598		378	25	Innouendy	-60	90
INAC060	460098	7160600		378	8	Innouendy	-60	90
INAC061	459999	7160603		379	2	Innouendy	-60	90
INAC062	459901	7160603		377	7	Innouendy	-60	90
INAC063	459792	7160606		377	34	Innouendy	-60	90
INAC064	459704	7160606		381	38	Innouendy	-60	90
INAC065	459610	7160594		385	28	Innouendy	-60	90
INAC066	459501	7160602		385	7	Innouendy	-60	90
INAC067	459403	7160600		388	17	Innouendy	-60	90
INAC068	459302	7160608		380	16	Innouendy	-60	90
INAC069	459207	7160598		382	52	Innouendy	-60	90
INAC070	460847	7160392		382	72	Innouendy	-60	90
INAC071	460798	7160394		378	70	Innouendy	-60	90
INAC072	460749	7160385		381	76	Innouendy	-60	90
INAC073	460699	7160400		385	75	Innouendy	-60	90
INAC074	460648	7160398		382	51	Innouendy	-60	90
INAC075	460603	7160400		392	69	Innouendy	-60	90

DESERT METALS

Limited

INAC076	460550	7160398	396	15	Innouendy	-60	90
INAC077	460501	7160402	400	59	Innouendy	-60	90
INAC078	460452	7160394	379	73	Innouendy	-60	90
INAC079	460402	7160400	380	36	Innouendy	-60	90
INAC080	460352	7160399	380	31	Innouendy	-60	90
INAC081	460304	7160397	375	36	Innouendy	-60	90
INAC082	460554	7160299	375	7	Innouendy	-60	90
INAC083	460502	7160303	374	76	Innouendy	-60	90
INAC084	460448	7160301	380	45	Innouendy	-60	90
INAC085	460400	7160302	383	72	Innouendy	-60	90
INAC086	460349	7160301	391	34	Innouendy	-60	90
INAC087	460297	7160300	391	34	Innouendy	-60	90
INAC088	460248	7160299	394	37	Innouendy	-60	90
INAC089	460396	7160198	397	33	Innouendy	-60	90
INAC090	460347	7160198	378	27	Innouendy	-60	90
INAC091	460294	7160198	377	26	Innouendy	-60	90
INAC092	460248	7160200	378	38	Innouendy	-60	90
INAC093	460198	7160200	375	55	Innouendy	-60	90
INAC094	460149	7160205	376	18	Innouendy	-60	90
INAC095	460044	7160200	378	7	Innouendy	-60	90
INAC096	459946	7160197	378	16	Innouendy	-60	90
INAC097	459841	7160201	376	35	Innouendy	-60	90
INAC098	459744	7160201	374	33	Innouendy	-60	90
INAC099	459645	7160202	375	25	Innouendy	-60	90
INAC100	459545	7160200	375	20	Innouendy	-60	90
INAC101	459450	7160196	375	45	Innouendy	-60	90
INAC102	459346	7160200	373	60	Innouendy	-60	90
INAC103	460599	7160100	376	26	Innouendy	-60	90
INAC104	460551	7160098	377	16	Innouendy	-60	90
INAC105	460500	7160098	376	27	Innouendy	-60	90
INAC106	460449	7160099	377	7	Innouendy	-60	90
INAC107	460400	7160100	377	7	Innouendy	-60	90
INAC108	460349	7160099	376	7	Innouendy	-60	90
INAC109	460300	7160106	375	9	Innouendy	-60	90
INAC110	460247	7160098	376	7	Innouendy	-60	90
INAC111	460200	7160106	376	10	Innouendy	-60	90
INAC112	460153	7160104	376	18	Innouendy	-60	90
INAC113	461450	7160200	372	9	Innouendy	-60	90
INAC114	461404	7160202	372	11	Innouendy	-60	90
INAC115	461352	7160202	373	11	Innouendy	-60	90
INAC116	461306	7160204	374	10	Innouendy	-60	90
INAC117	461255	7160200	374	17	Innouendy	-60	90
INAC118	461205	7160203	374	29	, Innouendy	-60	90
					,		

DESERT METALS

Limited

INAC119	461156	7160200	377	52	Innouendy	-60	90
INAC120	461102	7160188	375	55	Innouendy	-60	90
INAC121	461550	7160003	372	22	Innouendy	-60	90
INAC122	461500	7160001	372	34	Innouendy	-60	90
INAC123	461446	7160000	371	53	Innouendy	-60	90
INAC124	461403	7160000	372	39	Innouendy	-60	90
INAC125	461351	7160003	374	30	Innouendy	-60	90
INAC126	461302	7160003	374	12	Innouendy	-60	90
INAC127	461253	7160006	373	20	Innouendy	-60	90
INAC128	461204	7160005	373	33	Innouendy	-60	90
INAC129	461152	7160005	376	40	Innouendy	-60	90
INAC130	461102	7160004	377	45	Innouendy	-60	90
INAC131	461053	7160002	375	17	Innouendy	-60	90
INAC132	460994	7160002	375	35	Innouendy	-60	90
INAC133	460947	7160000	374	32	Innouendy	-60	90
INAC134	460900	7160001	372	18	Innouendy	-60	90
INAC135	460847	7159999	373	16	Innouendy	-60	90
INAC136	460799	7160004	374	25	Innouendy	-60	90
INAC137	460748	7160004	374	33	Innouendy	-60	90
INAC138	460697	7160002	374	27	Innouendy	-60	90
INAC139	460649	7160003	375	41	Innouendy	-60	90
INAC140	460600	7160000	374	55	Innouendy	-60	90
INAC141	460548	7160003	373	14	Innouendy	-60	90
INAC142	460499	7160003	374	20	Innouendy	-60	90
INAC143	460449	7159999	376	19	Innouendy	-60	90
INAC144	460392	7160003	376	7	Innouendy	-60	90
INAC145	460346	7159998	375	6	Innouendy	-60	90
INAC146	460302	7160009	374	12	Innouendy	-60	90
INAC147	460250	7160003	374	24	Innouendy	-60	90
INAC148	460201	7160004	376	38	Innouendy	-60	90
INAC149	460149	7160001	375	35	Innouendy	-60	90
INAC150	460100	7160001	374	26	Innouendy	-60	90
INAC151	461403	7159799	371	65	Innouendy	-60	90
INAC152	461350	7159800	372	60	Innouendy	-60	90
INAC153	461304	7159800	372	60	Innouendy	-60	90
INAC154	461255	7159801	371	81	Innouendy	-60	90
INAC155	461198	7159800	371	58	Innouendy	-60	90
INAC156	461145	7159803	372	67	Innouendy	-60	90
INAC157	461051	7160204	374	61	Innouendy	-60	90
INAC158	460504	7159801	374	10	Innouendy	-60	90
INAC159	460409	7159806	373	26	Innouendy	-60	90
INAC160	460298	7159800	372	35	Innouendy	-60	90
INAC161	460200	7159802	373	23	Innouendy	-60	90

DESERT METALS

Limited

INAC162	460098	7159801	373	17	Innouendy	-60	90
INAC163	459995	7159801	372	7	Innouendy	-60	90
INAC164	459901	7159805	372	7	Innouendy	-60	90
INAC165	459805	7159800	373	20	Innouendy	-60	90
INAC166	459699	7159803	372	12	Innouendy	-60	90
INAC167	459582	7159805	371	24	Innouendy	-60	90
INAC168	459496	7159795	371	43	Innouendy	-60	90
INAC169	459402	7159800	371	34	Innouendy	-60	90
INAC170	459298	7159803	372	42	Innouendy	-60	90
INAC171	459206	7159798	372	53	Innouendy	-60	90
INAC172	459101	7159800	372	50	Innouendy	-60	90
INAC173	458987	7159798	374	48	Innouendy	-60	90
INAC174	458903	7159796	373	57	Innouendy	-60	90
INAC175	458803	7159792	370	40	Innouendy	-60	90
INAC176	458700	7159794	371	42	Innouendy	-60	90
INAC177	467323	7168283	392	26	regional	-90	90
INAC178	467375	7168192	394	16	regional	-90	360
INAC179	467437	7168104	389	12	regional	-90	360
INAC180	467503	7167998	392	30	regional	-90	360
INAC181	467579	7167901	395	27	regional	-90	360
INAC182	467651	7167800	391	21	regional	-90	360
INAC183	467718	7167701	392	15	regional	-90	360
INAC184	467798	7167595	390	13	regional	-90	360
INAC185	467925	7167508	389	33	regional	-90	360
INAC186	468017	7167443	391	42	regional	-90	360
INAC187	468103	7167345	392	13	regional	-90	360
INAC188	468197	7167238	389	7	regional	-90	360
INAC189	468296	7167128	392	42	regional	-90	360
INAC190	468404	7167026	390	39	regional	-90	360
INAC191	468503	7166935	390	26	regional	-90	360
INAC192	468583	7166854	390	84	regional	-90	360
INAC193	468698	7166766	390	91	regional	-90	360
INAC194	468800	7166605	390	62	regional	-90	360
INAC195	468849	7166480	388	83	regional	-90	360
INAC196	468855	7166399	388	78	regional	-90	360
INAC197	468898	7166192	388	93	regional	-90	360
INAC198	468959	7166015	386	84	regional	-90	360
INAC199	469042	7165785	387	83	regional	-60	90
INAC200	469151	7165605	388	81	regional	-60	90
INAC201	469233	7165392	387	77	regional	-60	90
INAC202	469326	7165194	385	36	regional	-60	90
INAC203	459501	7158152	367	25	regional	-60	90
INAC204	459398	7158138	368	27	regional	-60	90

DESERT METALS

Limited

INAC205	459295	7158167	367	45	regional	-60	90
INAC206	459191	7158177	366	43	regional	-60	90
INAC207	459096	7158167	371	59	regional	-60	90
INAC208	458993	7158167	367	72	regional	-60	90
INAC209	458877	7158169	369	40	regional	-60	90
INAC210	458798	7158168	368	46	regional	-60	90
INAC211	458695	7158167	366	62	regional	-60	90
INAC212	458604	7158172	366	67	regional	-60	90
INAC213	458492	7158171	365	66	regional	-60	90
INAC214	458404	7158175	368	52	regional	-60	90
INAC215	458303	7158176	367	49	regional	-60	90
INAC216	457989	7158173	368	68	regional	-60	90
INAC217	457895	7158178	367	70	regional	-60	90
INAC218	457796	7158182	369	56	regional	-60	90
INAC219	457700	7158181	368	51	regional	-60	90
INAC220	457586	7158183	369	54	regional	-60	90
INAC221	457498	7158184	369	71	regional	-60	90
INAC222	457393	7158186	369	60	regional	-60	90
INAC223	457208	7158185	368	71	regional	-60	90
INAC224	456991	7158188	369	96	regional	-60	90
INAC225	456792	7158191	370	37	regional	-60	90
INAC226	456701	7158194	368	41	regional	-60	90
INAC227	456598	7158195	370	32	regional	-60	90
INAC228	456398	7158191	370	42	regional	-60	90
INAC229	456902	7158186	369	87	regional	-60	90
INAC230	459252	7156803	366	108	Stockyard	-60	90
INAC231	459150	7156795	365	93	Stockyard	-60	90
INAC232	458952	7156796	365	44	Stockyard	-60	90
INAC233	458848	7156797	367	54	Stockyard	-60	90
INAC234	459051	7156806	363	79	Stockyard	-60	90
INAC235	458764	7156805	370	77	Stockyard	-60	90
INAC236	458553	7156796	366	103	Stockyard	-60	90
INAC237	458947	7156999	366	33	Stockyard	-60	90
INAC238	458848	7156998	368	78	Stockyard	-60	90
INAC239	458802	7157102	365	60	Stockyard	-60	90
INAC240	458699	7157096	364	38	Stockyard	-60	90
INAC241	458652	7157098	363	42	Stockyard	-60	90
INAC242	458702	7157220	366	49	Stockyard	-60	90
INAC243	458651	7157206	365	27	Stockyard	-60	90
INAC244	458595	7157199	367	32	Stockyard	-60	90
INAC245	458952	7157297	367	79	Stockyard	-60	90
INAC246	458853	7157303	366	60	Stockyard	-60	90
INAC247	458804	7157308	367	63	Stockyard	-60	90

DESERT METALS

Limited

INAC24	48 458703	7157306	363	41	Stockyard	-60	90
INAC24	49 458650	7157299	364	34	Stockyard	-60	90
INAC2	50 458599	7157297	365	26	Stockyard	-60	90
INAC2	51 458550	7157296	368	23	Stockyard	-60	90
INAC2	52 458505	7157307	369	33	Stockyard	-60	90
INAC2	53 459046	7157400	366	44	Stockyard	-60	90
INAC2	54 458946	7157398	364	44	Stockyard	-60	90
INAC2	55 458851	7157403	366	49	Stockyard	-60	90
INAC2	56 458750	7157406	366	14	Stockyard	-60	90
INAC2	57 458656	7157402	365	16	Stockyard	-60	90
INAC2	58 458551	7157392	366	15	Stockyard	-60	90
INAC2	59 458455	7157395	366	56	Stockyard	-60	90
INAC2	60 458356	7157420	367	55	Stockyard	-60	90
INAC2	61 458449	7157297	368	55	Stockyard	-60	90
INAC2	62 458397	7157298	366	71	Stockyard	-60	90
INAC2	63 458303	7157304	366	103	Stockyard	-60	90
INAC2	64 458303	7157206	366	40	Stockyard	-60	90
INAC2	65 458254	7157205	368	54	Stockyard	-60	90
INAC2	66 458451	7157100	366	64	Stockyard	-60	90
INAC2	67 458355	7157095	365	25	Stockyard	-60	90
INAC2	68 458400	7157097	365	69	Stockyard	-60	90
INAC2	69 458298	7157095	364	78	Stockyard	-60	90
INAC2	70 458198	7157097	363	52	Stockyard	-60	90
INAC2	71 458380	7156974	365	30	Stockyard	-60	90
INAC2	72 458255	7157009	363	39	Stockyard	-60	90
INAC2	73 458153	7156995	365	63	Stockyard	-60	90
INAC2	74 458452	7156794	358	77	Stockyard	-60	90
INAC2	75 458250	7156798	362	37	Stockyard	-60	90
INAC2	76 458148	7156801	357	42	Stockyard	-60	90
INAC2	77 458047	7156798	362	79	Stockyard	-60	90
INAC2	78 456027	7157172	354	25	regional	-90	360
INAC2	79 456049	7157137	368	25	regional	-90	360
INAC2	80 456203	7157002	358	16	regional	-90	360
INAC2	81 456309	7156913	360	14	regional	-90	360
INAC2	82 456425	7156823	360	14	regional	-90	360
INAC2	83 456599	7156676	360	36	regional	-90	360
INAC2	84 456804	7156488	368	67	regional	-90	360
INAC2	85 456884	7156404	368	55	regional	-90	360
INAC2	86 456995	7156292	375	62	regional	-90	360
INAC2	87 457085	7156205	376	51	regional	-90	360
INAC2	88 457199	7156104	376	42	regional	-90	360
INAC2	89 457293	7156032	371	36	regional	-90	360
INAC2	90 457399	7155951	373	64	regional	-90	360

DESERT METALS

Limited

INAC291	457600	7155799	378	92	regional	-90	360
INAC292	454903	7155591	382	27	regional	-90	360
INAC293	455300	7155253	385	13	regional	-90	360
INAC294	455397	7155185	384	25	regional	-90	360
INAC295	455493	7155118	384	29	regional	-90	360
INAC296	455614	7155060	380	33	regional	-90	360
INAC297	455702	7155002	382	22	regional	-90	360
INAC298	455803	7154878	382	20	regional	-90	360
INAC299	455920	7154778	378	42	regional	-90	360
INAC300	455984	7154676	351	43	regional	-90	360
INAC301	456039	7154591	357	35	regional	-90	360
INAC302	456100	7154512	356	41	regional	-90	360
INAC303	456221	7154407	358	84	regional	-90	360
INAC304	456407	7154357	363	71	regional	-90	360
INAC305	461547	7159699	374	44	Innouendy	-60	90
INAC306	461448	7159701	378	52	Innouendy	-60	90
INAC307	461349	7159709	376	61	Innouendy	-60	90
INAC308	461250	7159702	381	78	Innouendy	-60	90
INAC309	461101	7159702	387	68	Innouendy	-60	90
INAC310	460948	7159699	396	57	Innouendy	-60	90
INAC311	460850	7159704	399	20	Innouendy	-60	90
INAC312	460752	7159699	401	14	Innouendy	-60	90
INAC313	460648	7159697	401	11	Innouendy	-60	90

DESERT METALS

Limited

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Aircore (AC) drilling samples were collected as 1-m samples from the rig cyclone and placed on the ground in separate piles. These 1-m sample piles were then sampled using a plastic PVC tube ("spear") to collect a composite sample in the ratio of one sample for every four metres. One 1-m spear sample was collected as the last sample from INAC034. The 4-m composite samples and the one 1-m sample were then sent for analysis. The Competent Person considers the quality of the sampling to be fit for the purpose of early/reconnaissance exploration. Reverse Circulation (RC) drilling samples were collected as 1m samples split from the rig cyclone using a cone splitter. These samples were then stored securely on site. Approximately 1kg of sample was also collected from each metre interval and composite samples were then sent for analysis.
Drilling techniques	• Drill type (e.g., core, reverse circulation, open-hole hammer, rotary airblast, auger, Bangka, sonic, etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-	 INAC049-INAC313 Aircore to blade refusal at EOH with a face sampling bit.
	sampling bit or other type, whether core is oriented and if so, by what method, etc.).	DRC009-DRC021 Reverse circulation to end of hole

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Chip recoveries were monitored for consistent sample size for each metre. Appropriate measures were taken to maximise recovery and ensure representative nature of the samples, including efforts to keep the drill holes as dry as possible. No relationship between recovery and grade has been observed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	• All drill holes are logged in their entirety. Qualitative descriptions of mineralogy, mineralisation, weathering, lithology, colour and other features are recorded. A sample of every metre is permanently retained in chip trays for any follow-up logging. Logging is sufficient to support early exploration studies.
Sub-sampling and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	No Assays reported in this release

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make model, reading times, calibration factors applied and their derivation etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. The verification of significant intersections by either independent 	 Samples are to be submitted for sample preparation and geochemical analysis by ALS Perth. Standards and blanks were submitted in the sample stream at a rate of approximately 1 per 30 samples. The laboratory conducted its own checks which were also monitored. In the field spot checks were completed on selected samples using a hand held XRF unit. These results are not considered reliable without calibration using chemical analysis. They were used as a guide to the relative presence or absence of certain elements, including REEs, to help guide the drill program. The Desert Metals Exploration Manager has personally
Verification of assaying	 The vernication of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 InterDesert Metals Exploration Manager has personally inspected all core and chips. No twin holes have been completed. Primary drill data were collected manually on paper and digitally using Excel software before being transferred to the master database in mining software package Micromine. Conversion of elemental analysis (REE parts per million) to oxide (REO parts per million) was using the below element to oxide conversion factors.
		Element - Conversion Factor - Oxide Form
		Ce 1.2284 CeO ₂
		Dy 1.1477 Dy ₂ O ₃
		Er 1.1435 Er ₂ O ₃
		Eu 1.1579 Eu ₂ O ₃
		Gd 1.1526 Gd ₂ O ₃
		Ho 1.1455 Ho ₂ O ₃
		La 1.1728 La ₂ O ₃
		Lu 1.1371 Lu ₂ O ₃
		Nd 1.1664 Nd ₂ O ₃

Criteria	JORC Code explanation	Commentary
		Pr 1.2083 Pr ₆ O ₁₁
		Sm 1.1596 Sm ₂ O ₃
		Tb 1.1762 Tb₄O ₇
		Tm 1.1421 Tm₂O₃
		Y 1.2699 Y ₂ O ₃
		Yb 1.1387 Yb ₂ O ₃ • Rare earth oxide is the industry-accepted form for reporting rare earth analytical results. The following calculations are used for compiling REO into their reporting and evaluation groups: • TREO (Total Rare Earth Oxide) = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Y_2O_3 + Lu_2O_3$ • TREO-Ce = TREO - CeO ₂ • LREO (Light Rare Earth Oxide) = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3$ • HREO (Heavy Rare Earth Oxide) = $Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Yb_2O_3 + Yb_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Tb_4O_7 + Dy_2O_3 + Y_2O_3$ • OREO (Critical Rare Earth Oxide) = Nd_2O_3 + Eu_2O_3 + Tb_4O_7 + Dy_2O_3 + Y_2O_3
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control 	 Drill hole collar locations were surveyed using handheld GPS. Expected accuracy for collar surveys is ± 3 m. Down-hole surveys were taken by north-seeking gyro with readings at the surface and then approximately every 3 m downhole. The grid system is MGA GDA94 (zone 50), local easting
		 and northing are MGA. Topographic surface uses handheld GPS elevation data, which is adequate for the current stage of the project.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample composting has been applied. 	 Drilling to date has been reconnaissance in nature; the spacing is insufficient to make any conclusions as to the context, size, or extent of the mineralisation. Data spacing and distribution is not sufficient to allow the estimation of mineral resources. Drill samples were composted on site to create 4-m composite samples, with 1-m samples taken near end of hole.
Orientation of data in relation to geological structure	 Whether the orientation of the sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 It is not known whether the orientation of the sampling achieved unbiased sampling of possible structures; however, it is considered unlikely by the Competent Person. It is not known if the relationship between the drilling orientation and the orientation of key mineralised structures has introduced a sampling bias; however, it is considered unlikely by the Competent Person.
Sample security	The measures taken to ensure sample security.	• Samples were sealed in polyweave bags that were cable- tied closed and stored securely on site until transported by company personnel to the lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been conducted at this stage.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Surveys were conducted within DM1 100%-owned Exploration Licenses E9/2330 and E9/2351 All tenements are in good standing with DMIRS. DM1 is unaware of any impediments for exploration on these licenses.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties	 The tenements have had very limited published or open file exploration work for magmatic nickel type deposits. Limited exploration undertaken to date by past explorers was mostly focused on iron ore, and, to a lesser extent, gold. The main exploration that is relevant to Desert Metals is described in the prospectus downloadable from the Company's website.
Geology	• Deposit type, geological setting and style of mineralisation.	 The project covers regions of the Narryer Terrane in the Yilgarn Craton, said to represent reworked remnants of greenstone sequences that are prospective for intrusion-hosted Ni-Cu-(Co)- (PGEs) and orogenic gold mineralisation. Nickel-sulphide mineralisation is anticipated to be related to mantle-derived (mafic and ultramafic) intrusives intersected by deep structures. The REE mineralisation is considered to occur in deeply weathered lateritic and saprolitic clay layers of the Narryer terrane.

Criteria	JORC Code explanation	Commentary
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collars elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to table in body of the report.
Data aggregation methods	 In reporting Exploration Results, weighting average techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporated short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation shown in detail. The assumption used for any reporting of metal equivalent values should be clearly stated. 	 Assay results of REE are reported in ppm and the conversion of elemental analysis (REE parts per million) to stoichiometric oxide (REO parts per million) was undertaken using stoichiometric oxide conversion factors.
Relationship between mineralisation	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	• The relationship between drill hole orientations and mineralisation is unknown at this stage. All results are reported as downhole intervals/widths.
widths and intercept lengths	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	• The relationship between drill hole orientations and mineralisation is unknown at this stage. All results are reported as downhole intervals/widths.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figure in body of text.

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All results are reported transparently in the report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All new and relevant data have been reported.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 A full review of the results to date will be undertaken prior to any future programs being executed.