Metallurgical Testwork Demonstrates Potential Process Route for Innouendy

Initial metallurgical testwork for the clay-hosted Innouendy Rare Earth Element (REE) Deposit clearly demonstrates the potential for an atmospheric acid leach process to recover greater than 70% of the key rare earth elements contained in the clays.

Limited

Desert Metals Limited (DM1) is pleased to announce results of preliminary metallurgical test work for the 100% owned Innouendy Rare Earth Project. Testwork has been completed by ALS Metallurgy in Perth.

Innouendy REE Leach Test Work

The REEs at Innouendy can be categorised into three components where REE atoms are:

1. Ionically bound and which can be recovered using a salt, typically ammonium sulphate $((NH_4)_2SO_4)$ or Sodium Chloride (NaCl), where the positively charged ion (cation) of the salt is used to replace REE cations which are relatively loosely bound in the clay structure. Typically, ionically bound REEs are recovered from clays in weakly acid conditions around pH3 using an acid containing the same negatively charged ion (anion) as the salt used (i.e. H_2SO_4 for $(NH_4)_2SO_4$).

2. Chemically bound to clay minerals, where the REE's can be leached using dilute acids such as sulphuric or hydrochloric acids at near ambient temperatures and atmospheric pressure.

3. Contained centrally (interstitially) within the atomic structure of non-clay minerals. These minerals are often phosphates such as monazite. REE's contained within these minerals can be considered refractory given they can only be recovered by relatively aggressive leach conditions, usually combining high acid strengths, temperatures and pressures.

Preliminary testwork of the Innouendy mineralisation has focused on recovering the clay-hosted ionically and chemically bound components to ensure a relatively low-cost future process route.

The preliminary test work programme consisted of a series of leach tests on two composite samples covering the two main deposit areas, Main Zone and Cattle Yard, at different depths and REE grades (Figure 1 and Table 1 in Appendix B). Samples were selected to include both higher grade samples and material which is typical of less mineralised clays. A summary of the testwork methodology is provided as Appendix A.

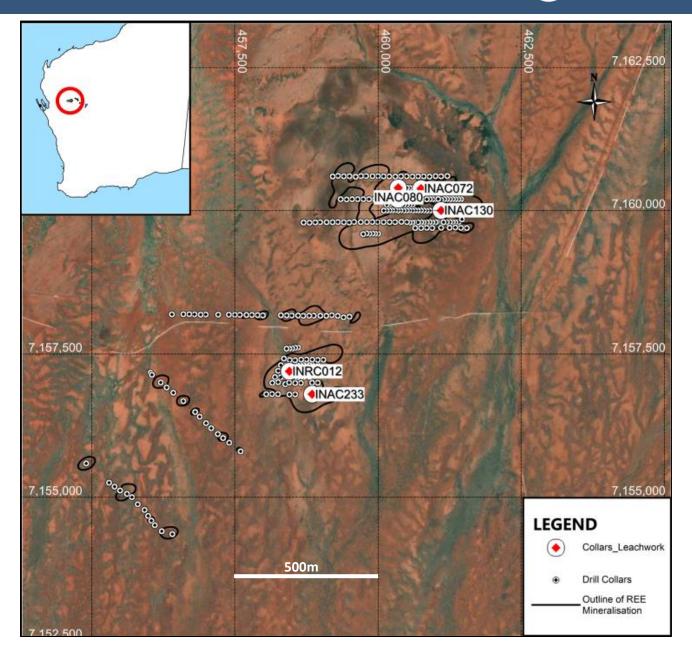


Figure 1: Location of Innouendy Leach Testwork Samples

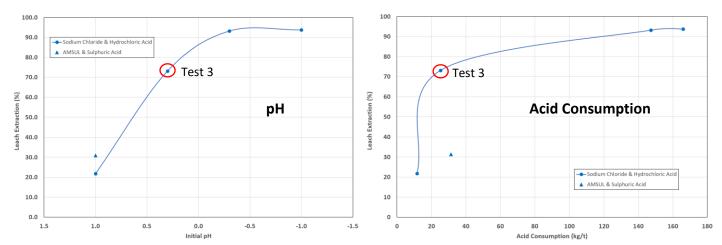
An initial series of leach tests were conducted on the individual composite samples using sulphuric acid and ammonium sulphate (AMSUL or $(NH_4)_2SO_4$) at pH 3, 2 and 1 over 24 hours at room temperature. Recoveries of REE for these initial tests were relatively low, indicating more aggressive leaching conditions are required.

A second series of leach tests were conducted at higher acid concentrations. All tests were conducted on a composite sample made up in equal parts from the five Main Zone deposit samples. Both hydrochloric and sulphuric acids (HCl and H₂SO₄) were trialled in the leach tests. For tests at pH1 ammonium sulphate or sodium chloride (NaCl) salts were added with either sulphuric or hydrochloric acids. Tests with acid concentrations

stronger than pH1 only acids were added. All the tests were conducted at 40°C at atmospheric pressure over 48 hours. The solids concentration was maintained at 14% solids by weight.

ESERT

ETAL


Limited

The test conditions are summarised in Table 2. Results from the test work are provided in Table 2 and Figure 2.

These preliminary tests demonstrate that recoveries above 70% of the key economic REE can be achieved using relatively low acid additions at close to ambient temperatures and atmospheric pressures. Recoveries over 90% can be achieved by increasing acid additions. However, higher acid additions also result in higher acid consumption and increased dissolution of non-valuable elements resulting in increased downstream separation costs.

The results suggest that leaching is strongly impacted by kinetic factors (temperature, time and acid concentration) and suggest the direction for future test work.

Based on the test work, both hydrochloric and sulphuric acid are effective at leaching REE. Selection of the most economic acid will depend on the cost of supply and ease of recovering acid remaining in solution after leaching.

Figure 2: Innouendy Leach Extraction at Decreasing pH (increasing Acidity)

	Table 2: Innouendy Leach Testwork Results																								
	eq	pa	ution pH	sumption	(g/L)	s (%)									48h Lead	ch Extrac	tion (%)								
Sample	Acid Added	Salt Added	Initial Sol	Acid Consı (kg/t)	Free Acid	Mass Los	TREE-Ce	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	Sc	U	Th
Test 1	H2SO4	0.5M AmSul	1.0	31.3	23.8	0.9	30.9	29.0	37.3	33.4	34.0	36.4	33.5	34.4	35.5	32.0	24.0	26.8	16.1	29.0	30.2	23.1	2.6	21.7	11.4
Test 2	HCL	0.5M NaCl	1.0	11.6	3.3	1.4	21.8	21.6	21.7	24.3	23.9	23.3	21.0	23.1	21.0	18.9	12.1	15.1	15.5	13.8	14.9	15.5	2.5	21.4	1.1
Test 3	HCL	-	0.3	25.2	23.8	2.0	73.1	73.3	65.7	79.5	79.8	78.2	72.0	74.8	72.0	64.7	66.2	45.8	56.7	45.2	41.7	52.2	9.0	33.4	35.7
Test 4	HCL	-	-0.3	147.3	90.4	14.3	93.2	93.7	97.7	99.6	99.7	95.9	87.2	95.0	93.2	85.2	85.8	66.4	82.6	69.0	67.6	72.3	13.2	45.4	73.4
Test 5	HCL	-	-1.0	165.9	208.6	18.0	93.8	94.4	94.8	98.2	98.8	96.6	87.5	96.2	97.2	90.5	98.4	72.8	75.7	78.1	80.6	74.9	32.3	59.4	91.6

A further series of leach tests on the individual samples used to make up the main zone composites has been commissioned. These tests will utilise a dilute acid solution of 25 g/l HCl at 40°C to show variability in recovery with location, grade or depth.

ESERT

IETALS

Limited

Beneficiation Testwork

The mineralised zones at Innouendy are predominantly hosted in clays weathered from primary granite intrusions which contain relatively high levels of REE's. The clay minerals are relatively fine. However, the more refractory REE containing minerals are often aggregated in coarser components within the mineralised zones, so size separation offers a potential mechanism for rejecting a significant amount of material prior to leaching, while maximising retention of recoverable REE's.

The Innouendy Main Zone composite sample was screened and assayed to determine the distribution of REE within the clays by size. Results are provided in Table 3 of Appendix B.

Results demonstrate that REE are relatively concentrated in the fine, minus 75µm, fraction and that silica is concentrated in coarser fractions. Further work is planned to show if beneficiation of the material based on particle size prior to leaching is viable. If so it would potentially reduce the amount of acid consumed.

Scandium Extraction

Scandium is a light transition metal commonly found in associated REE deposits in low grades. It is relatively widely distributed in nature with an average crustal concentration of around 22 ppm, although very infrequently concentrated at levels it can be economically extracted. Grades of 100 ppm and higher are considered rare.

Scandium is used as an alloying additive in aluminium production for aerospace applications and in the production of hydrogen fuel cells. Scandium is typically produced and utilised as scandium oxide (Sc_2O_3) otherwise known as scandia. It relatively difficult to extract and purify and is commonly produced as a byproduct of REE, alumina and nickel production. While a number of high scandium laterite resources have been identified in Eastern Australia, these have not been developed due to the relatively high capital and operating costs required to extract scandium from these sources.

Scandium use is currently supply constrained and it commands a significant pricing premium as a result. While it is difficult to establish a market price as it is infrequently traded, current (June 2023) listed pricing on the Shanghai Metals Exchange is US\$880/kg for high purity scandia. World production of scandia is also difficult to estimate as the market is controlled by China and so production volumes are opaque. Independent estimates of total supply range from 10 to 30t per annum of scandium in all forms.

Exploration drilling at Innnouendy has identified widespread zones of elevated (+20ppm) scandium levels, particularly within the Cattle Yard deposit area. Intercepts of greater than 50ppm Scandium (76.7 ppm Sc2O3 using standard stoichiometric conversion) from the entire Innouendy aircore drilling program are shown in Table 4, Appendix B.

While these grades are unlikely to be high enough to justify development on their own, when extracted in conjunction with REE, scandium may form a valuable byproduct. As part of the REE leach test work programme two high grade (>50ppm) Sc samples were included in the variability samples to test the potential for

recovering scandium as a valuable byproduct along with REE's. Results from these higher grade Sc zones are still pending.

ESERT

ETALS

Limited

During the leaching of the Main Zone composite 9% of Scandium was leached along with the REE's at moderate (25 g/l HCl) acid concentration in solution after 48h at 40°C. It is likely that extraction will increase if leach times are extended and/or temperatures and acid concentration are increased. The variability test work currently underway includes two samples with elevated Scandium levels. Results from this work will assist in developing a better understanding of the potential for Scandium production as a byproduct at Innouendy.

Further Testwork

Based on the initial test work results, longer leach times and higher temperatures are likely to significantly increase REE recoveries. In commercial operation the practical way to achieve this is by utilising vat or heap leaching to extend the leaching time. Therefore, future test work will focus on column trials to establish the viability of vat or heap leaching and in particular the permeability of the Innouendy clays and establishment of an appropriate agglomeration methodology if this is required.

Managing Director Dr Rob Stuart commented "We are pleased that our initial metallurgical testwork results are in line with our West Australian clay hosted REE peers and have successfully defined a potentially viable and relatively simple processing route for these deposits. The currently constrained supply and strategic nature of REEs bodes well for future price improvements, which could make the Innouendy project a valuable asset."

Authorised by the Board of Desert Metals Limited.

Competent Person Statement

The information in this announcement that relates to Metallurgical Testwork is based on, and fairly represents, information and supporting documentation prepared by Mr Philip Reese, a competent person who is a member of the Australasian Institute of Mining and Metallurgy. Mr Reese has a minimum of five years' experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a competent person as defined in the 2012 Edition of the Joint Ore Reserves. Mr Reese is an independent consultant and holds securities in the Company. Mr Reese has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Tony Worth, a competent person who is a member of the Australasian Institute of Geoscientists. Mr Worth has a minimum of five years' experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a competent person as defined in the 2012 Edition of the Joint Ore Reserves. Mr Worth is a related party of the Company, being a Director, and holds securities in the Company. Mr Worth has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Appendix A: Innouendy - REE Recovery Testwork Programme Methodology

1.Sample Preparation

- Prepare composite, homogenise & split out for testwork and head analysis.
- Moisture content determination.
- Prepare composite samples: Main Zone and Cattle Yards
- Prepare Main Zone Composite for size analysis (blending & splitting).

2.Sample Characterisation

- Pulverise head sample.
- Pulverise size fraction samples and area composite head samples.
- Solid Analysis method ME-MS81D by ALS Geochemistry.
- 3. Leach Tests
 - Leach Tests on Main Zone Composite over 48 hrs.
 - Conduct three HCl leach tests at 40°C in 25, 100 and 220 g/L HCl.
 - Conduct two leach tests at 40°C targeting pH 1 with
 - i. Addition of 32% HCl and 0.5M NaCl,
 - ii. Addition of 98% H2SO4 with 0.5M AMSUL.
 - Kinetic Leach Tests with 0.5M AMSUL over 24 hrs
 - Variability Leach testwork
 - i. Kinetic tests at ambient temperature targeting at pH 1 Collect samples at: 0.25, 1, 4, 8 & 24hr

ESERT

METALS

Limited

- ii. Tests at ambient temperature targeting pH 2 and 3 No intermediate samples, 24 hr Leach Tests on with 0.5M AMSUL over 24 hrs
- iii. Leach tests on eight primary samples at 40°C and 25 g/l HCl over 48h.
- Leach Solution Analysis base metals, rare earths, U & Th by ICP.

4.Leach Residue Analysis

- Pulverise leach residue samples.
- Solid Analysis method ME-MS81D by ALS Geochemistry.

Appendix B: Innouendy – Leach Testwork grades and sizing

							Tab	le 1: In	nouen	dy Lea	ch Test	work (Compo	site Sa	mple G	Grades								
	Hole ID	From	То	TREE	TREE-Ce	MREE	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	Sc	U	Th
		m	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Main Zone																								
Sample 1	INAC072	8	16	64.5	45.7	17.2	14.0	18.8	3.0	12.0	2.4	0.4	1.7	0.3	1.9	0.4	1.5	0.2	1.2	0.2	6.5	65.3	2.2	10.1
Sample 2	INAC080	24	31	1924	1243	522	468	681	105	382	64.7	11.2	41.1	5.4	29.6	5.4	14.9	2.2	13.4	1.9	99.0	34.4	6.6	3.6
Sample 3	INAC090	20	27	1439	855	320	322	584	63.2	231	35.6	6.1	28.7	3.7	22.5	4.1	10.4	1.4	7.9	1.1	117	14.6	5.3	10.1
Sample 4	INAC130	32	40	1861	786	322	360	1075	73.4	235	32.4	5.1	16.8	2.0	11.7	1.8	4.3	0.6	3.6	0.4	38.4	6.3	3.4	34.0
Sample 5	INAC080	16	24	158.1	95.4	34.9	36.6	62.7	7.7	24.0	4.6	0.7	3.3	0.5	2.8	0.5	1.5	0.2	1.5	0.2	11.4	9.6	3.4	15.1
Main Zone A	Average			1089	605	243.2	240.1	484.3	50.4	176.8	27.9	4.7	18.3	2.4	13.7	2.4	6.5	0.9	5.5	0.8	54.5	26.0	4.2	14.6
	-																							
Cattle Yard																								
Sample 6	INRC012	24	32	434	228	85.2	107	206	19.2	61.6	9.0	0.8	6.0	0.8	3.6	0.7	1.6	0.2	1.6	0.2	16.1	73.7	5.6	143
	INRC012	36	44	1838	1102	408	545	736	92.6	297	36.1	5.3	23.0	2.7	15.3	2.6	6.9	1.0	5.5	0.7	68.8	12.1	4.3	57.5
Sample 8	INAC233	48	54	1501	1031	378	342	470	70.8	266	52.6	14.1	45.6	5.8	34.9	6.3	17.5	2.3	14.1	1.9	158	33.6	3.0	5.1
Cattle Yard				1258	787	290	331	471	60.9	208	32.6	6.7	24.9	3.1	17.9	3.2	8.7	1.2	7.1	0.9	80.8	39.8	4.3	68.4
TREE = total	REE = total rare eare earth elements																							
IREE-Ce = TREE - Cerium (Ce)																								
	REE = Neodymium(Nd) + Praseodymium (Pr) + Terbium (Tb) + Dysprosium (Dy)																							

	Table 3: Innouendy Main Zone Composite Sizing																								
Assay	•	TREE-Ce	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	Sc	U	Th	SiO2		Fe2O3		MgO
Main Zana (212 um	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm 0.65	ppm	ppm	ppm	ppm 15.8	ppm	ppm	% 74.5	%	% C 05	%	%
Main Zone +212 μm	29.2	980	203	485	41.9	141	21.2	4.27	15.4	1.89	11.3	1.94	5.27		4.3	0.65	42.2	10.0	2.53	12.1		8.95	6.05	0.38	0.45
Main Zone +75 µm	18.0	898	209	381	43.3	151.5	22.1	3.97	14.65	1.91	11.1	1.94	5.04	0.67	4.4	0.60	47.2	26.4	3.42	15.8	66.4	14.1	7.88	0.50	0.92
Main Zone -75 µm	52.7	1286	301	529	63.9	222	34.3	7.15	23.8	2.96	17.2	2.94	7.97	1.11	7.5	1.01	64.3	33.6	5.41	16.7	50.5	22.9	11.0	0.51	1.32
Total	100.0	1127	256	489	53.8	185.6	28.3	5.73	19.7	2.46	14.4	2.47	6.65	0.90	6.0	0.83	54.8	27.1	4.21	15.2	60.4	17.2	8.96	0.47	0.99
Main Zone Composite		1115	249	488	51.4	180.5	29.3	5.88	19.1	2.52	14.4	2.49	7.80	0.97	6.0	0.79	56.9	24.3	4.12	13.1	59.9	16.1	8.80	0.46	1.00
Distribution		TREE-Ce	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	Sc	U	Th	SiO2	Al2O3	Fe2O3	CaO	MgO
Distribution		ppm	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Main Zone +212 µm		25.4	23.2	29.0	22.8	22.2	21.9	21.8	22.8	22.5	22.9	23.0	23.1	21.2	20.8	22.9	22.5	17.0	17.6	23.3	36.1	15.2	19.7	23.6	13.2
Main Zone +75 µm		14.4	14.7	14.0	14.5	14.7	14.1	12.5	13.4	14.0	13.9	14.2	13.7	13.5	13.3	13.0	15.6	17.6	14.7	18.8	19.8	14.8	15.9	19.2	16.7
Main Zone -75 μm		60.2	62.1	57.0	62.7	63.1	64.0	65.8	63.7	63.5	63.2	62.8	63.2	65.3	65.9	64.1	61.9	65.4	67.8	58.0	44.1	70.1	64.4	57.2	70.1

Table 4. All intercepts of > 50ppm Scandium from aircore drilling at Innounendy

Hole_ID	From	То	Sc_ppm	Sc203
INAC018	4	8	53.2	81.6
	8	12	55.6	85.3
INAC019	4	8	57.0	87.4
	8	12	54.3	83.3
INAC020	0	4	54.8	84.1
	4	8	63.2	96.9
INAC021	4	8	51.4	78.8
	8	12	51.3	78.7
INAC022	4	8	51.8	79.5
	8	12	50.4	77.3
INAC023	0	4	65.5	100.5
INAC023	4	8	72.0	110.4
INAC023	8	12	70.8	108.6
INAC023A	0	4	65.0	99.7
	4	8	64.0	98.2
	8	12	55.7	85.4
INAC024	0	4	50.5	77.5
INAC024	4	8	51.0	78.2
INAC024	8	12	66.9	102.6
INAC025	0	4	61.5	94.3
	4	8	55.5	85.1
INAC026	4	8	79.0	121.2
	8	12	50.8	77.9
INAC035	28	32	77.3	118.6
INAC037	28	32	56.3	86.4
	32	36	103.0	158.0
	36	40	61.9	94.9
	40	44	71.8	110.1
INAC041	64	68	62.3	95.6
INAC042	52	56	50.3	77.2
	56	60	51.7	79.3
INAC043	20	24	56.3	86.4
INAC044	16	20	67.8	104.0
	36	40	53.5	82.1
	40	44	52.9	81.1
	44	48	62.2	95.4
	48	52	50.3	77.2
	52	56	53.0	81.3
INAC070	8	12	63.0	96.6
	12	16	65.5	100.5
INAC071	12	16	64.9	99.5
INAC072	8	12	94.6	145.1
	12	16	72.6	111.4
	16	20	57.3	87.9

Hole_ID	From	То	Sc_ppm	Sc203
INAC073	32	36	55.2	84.7
INAC075	8	12	59.8	91.7
INAC078	4	8	64.6	99.1
	8	12	66.8	102.5
	12	16	56.5	86.7
	16	20	50.4	77.3
INAC083	0	4	53.7	82.4
INAC119	32	36	50.3	77.2
INAC124	32	36	62.5	95.9
INAC139	16	20	52.3	80.2
	24	28	58.8	90.2
INAC151	36	40	66.6	102.2
INAC152	24	28	77.7	119.2
	28	32	92.6	142.0
INAC153	44	48	75.4	115.6
INAC154	48	52	59.2	90.8
INAC168	24	28	63.0	96.6
	28	32	53.3	81.8
	32	36	60.6	92.9
	36	40	57.4	88.0
INAC172	32	36	58.2	89.3
	40	44	51.1	78.4
INAC185	8	12	73.3	112.4
INAC186	16	20	53.6	82.2
INAC191	16	20	54.1	83.0
INAC193	52	56	50.3	77.2
	56	60	56.4	86.5
INAC195	44	48	73.9	113.3
	52	56	53.2	81.6
	56	60	56.5	86.7
	60	64	56.9	87.3
INAC197	40	44	56.0	85.9
INAC200	52	56	51.5	79.0
INAC208	12	16	51.7	79.3
INAC209	8	12	100.0	153.4
INAC210	8	12	54.7	83.9
	12	16	99.4	152.5
	16	20	58.9	90.3
	20	24	52.3	80.2
INAC211	12	16	55.6	85.3
INAC213	40	44	57.0	87.4
INAC222	44	48	50.5	77.5
	48	52	50.0	76.7

Hole_ID	From	То	Sc_ppm	Sc203
INAC231	64	68	68.1	104.5
	68	72	74.7	114.6
	72	76	61.3	94.0
INAC234	56	60	58.7	90.0
INAC236	56	60	53.8	82.5
	60	64	57.8	88.7
INAC259	16	20	59.9	91.9
	20	24	70.9	108.7
	24	28	56.7	87.0
INAC263	44	48	55.3	84.8
INAC285	44	48	117.5	180.2
	48	52	76.9	117.9
	52	55	56.0	85.9
INAC286	20	24	55.9	85.7
INAC290	44	48	52.5	80.5
	48	52	55.3	84.8
INRC011	4	8	54.3	83.3
INRC012	24	28	68.5	105.1
	28	32	68.2	104.6
INRC013	32	36	56.0	85.9
	36	40	60.2	92.3
INRC021	36	40	66.1	101.4

Table 5. All aircore drilling at Innounendy

HoleID	East	North	RL	Dip	Azimuth	Depth	HoleID	East	North	RL	Dip	Azimuth	Depth	HoleID	East	North	RL	Dip	Azimuth	Depth
INAC001	461104	7159802	371	-60	90	83	INAC043	452550	7153109	357	-70	90	27	INAC081	460304	7160397	375	-60	90	36
INAC002	461027	7159805	371	-60	90	46	INAC044	452455	7153113	357	-70	90	75	INAC082	460554	7160299	375	-60	90	7
INAC003	461005	7159800	368	-60	90	53	INAC045	452358	7153107	357	-70	90	60	INAC083	460502	7160303	374	-60	90	76
INAC004	460950	7159797	370	-60	90	48	INAC046	452251	7153107	357	-70	90	28	INAC084	460448	7160301	380	-60	90	45
INAC005	460902	7159802	370	-60	90	48	INAC047	452151	7153111	356	-70	90	30	INAC085	460400	7160302	383	-60	90	72
INAC006	460851	7159797	370	-60	90	39	INAC048	452053	7153107	363	-70	90	37	INAC086	460349	7160301	391	-60	90	34
INAC007	460797	7159794	369	-60	90	28	INAC040	461209	7160607	380	-60	90	38	INAC087	460297	7160300	391	-60	90	34
INAC008	460751	7159798	369	-60	90	20							40	INAC088	460248	7160299	394	-60	90	37
INAC009	460702	7159796	373	-60	90	10	INAC050	461102	7160601	377	-60	90	-	INAC089	460396	7160198	397	-60	90	33
INAC010	460625	7159801	372	-60	90	10	INAC051		7160602	378	-60	90	41	INAC090	460347	7160198	378	-60	90	27
INAC011	460600	7159795	373	-60	90	11	INAC052	460898	7160595	379	-60	90	45	INAC091	460294	7160198	377	-60	90	26
INAC012	460551	7159795	373	-60	90	10	INAC053	460796	7160601	385	-60	90	32	INAC092	460248	7160200	378	-60	90	38
INAC013	460000	7159599	374	-60	90	10	INAC054	460698	7160600	380	-60	90	33	INAC093	460198	7160200	375	-60	90	55
INAC014	459950	7159600	374	-60	90	4	INAC055	460599	7160598	381	-60	90	26	INAC094	460149	7160205	376	-60	90	18
INAC015	459904	7159603	374	-60	90	5	INAC056	460500	7160600	382	-60	90	48	INAC095	460044	7160200	378	-60	90	7
INAC016	459849	7159600	374	-60	90	10	INAC057	460401	7160600	381	-60	90	18	INAC096	459946	7160197	378	-60	90	16
INAC017	459796	7159598	375	-60	90	4	INAC058	460301	7160596	378	-60	90	11	INAC097	459841	7160201	376	-60	90	35
INAC018	459754	7159591	377	-60	90	30	INAC059	460196	7160598	378	-60	90	25	INAC098	459744	7160201	374	-60	90	33
INAC019	461002	7160198	381	-60	90	60	INAC060	460098	7160600	378	-60	90	8	INAC099	459645	7160202	375	-60	90	25
INAC020	460951	7160202	382	-60	90	45	INAC061		7160603	379		90	2	INAC100	459545	7160200	375	-60	90	20
INAC021	460903	7160202	385	-60	90	53		459999			-60			INAC101	459450	7160196	375	-60	90	45
INAC022	460851	7160199	385	-60	90	16	INAC062	459901	7160603	377	-60	90	7	INAC102	459346	7160200	373	-60	90	60
INAC023	460746	7160202	386	-60	90	26	INAC063	459792	7160606	377	-60	90	34	INAC103	460599	7160100	376	-60	90	26
INAC023A	460704	7160211	383	-60	90	24	INAC064	459704	7160606	381	-60	90	38	INAC104		7160098	377	-60	90	16
INAC024	460644	7160204	385	-60	90	32	INAC065	459610	7160594	385	-60	90	28	INAC105	460500	7160098	376	-60	90	27
INAC025	460601	7160202	386	-60	90	56	INAC066	459501	7160602	385	-60	90	7	INAC106	460449	7160099	377	-60	90	7
INAC026	460504	7160202	386	-60	90	27	INAC067	459403	7160600	388	-60	90	17	INAC107	460400	7160100	377	-60	90	7
INAC027	460452	7160200	385	-60	90	56	INAC068	459302	7160608	380	-60	90	16	INAC108		7160099	376	-60	90	7
INAC028	458602	7157611	370	-60	90	28	INAC069	459207	7160598	382	-60	90	52	INAC109	460300	7160106	375	-60	90	9
INAC029	458553	7157607	371	-60	90	13	INAC070	460847	7160392	382	-60	90	72	INAC110	460247	7160098	376	-60	90	7
INAC030	458499	7157596	371	-60	90	22	INAC071	460798	7160394	378	-60	90	70	INAC111	460200	7160106	376	-60	90	10
INAC031	458450	7157595	371	-60	90	16	INAC072	460749	7160385	381	-60	90	76	INAC112		7160104	376	-60	90	18
INAC032	458402	7157592	368	-60	90	28						90		INAC113		7160200	372	-60	90	9
INAC033	458545	7157192	366	-60	90	33	INAC073	460699	7160400	385	-60		75	INAC114		7160202	372	-60	90	11
INAC034	458501	7157190	366	-60	90	21	INAC074	460648	7160398	382	-60	90	51	INAC115	461352	7160202	373	-60	90	11
INAC035	458473	7157186	378	-60	90	37	INAC075	460603	7160400	392	-60	90	69	INAC116		7160204	374	-60	90	10
INAC036	458449	7157188	371	-60	90	47	INAC076	460550	7160398	396	-60	90	15	INAC117		7160200	374	-60	90	17
INAC037	458403	7157188	370	-60	90	62	INAC077	460501	7160402	400	-60	90	59	INAC118		7160203	374	-60	90	29
INAC038	458347	7157191	367	-60	90	64	INAC078	460452	7160394	379	-60	90	73	INAC119		7160200	377	-60	90	52
INAC039	452950	7153098	356	-70	90	78	INAC079	460402	7160400	380	-60	90	36	INAC110		7160188	375	-60	90	55
INAC040	452852	7153106	356	-70	90	63	INAC080	460352	7160399	380	-60	90	31	111/10120		. 100100	373	00	50	33
INAC041	452749	7153101	356	-70	90	90														
INAC042	452649	7153106	355	-70	90	73														

HoleID	East	North	RL	Dip	Azimuth	Depth	HoleID	East	North	RL	Dip	Azimuth	Depth	HoleID	East	North	RL	Dip	Azimuth	Depth
INAC201	469232.9326	7165391.666	387	-60	90	77	INAC121	461550	7160003	372	-60	90	22	INAC161	460200.0472	7159801.634	373	-60	90	23
INAC202	469326.2756	7165193.667	385	-60	90	36	INAC122	461500	7160001	372	-60	90	34	INAC162	460097.8894	7159800.994	373	-60	90	17
INAC203	459501.3521	7158151.91	367	-60	90	25	INAC123	461446	7160000	371	-60	90	53	INAC163	459994.7504	7159800.794	372	-60	90	7
INAC204	459397.7183	7158138.183	368	-60	90	27	INAC124	461403	7160000	372	-60	90	40	INAC164	459900.8055	7159804.614	372	-60	90	7
INAC205	459294.5051	7158166.547	367	-60	90	45	INAC125	461351	7160003	374	-60	90	30	INAC165	459804.7579	7159800.334	373	-60	90	20
INAC206	459191.0939	7158176.865	366	-60	90	43	INAC126	461302	7160003	374	-60	90	12	INAC166	459698.7988	7159802.554	372	-60	90	12
INAC207	459095.5081	7158166.937	371	-60	90	59	INAC127	461253	7160006	373	-60	90	20	INAC167	459581.9964	7159804.534	371	-60	90	24
INAC208	458993.4658	7158167.287	367	-60	90	72	INAC128	461204	7160005	373	-60	90	34	INAC168	459496.2232	7159794.736	371	-60	90	43
INAC209	458876.6799	7158169.026	369	-60	90	40	INAC129	461152	7160005	376	-60	90	40	INAC169	459401.6681	7159799.995	371	-60	90	34
INAC210	458797.8249	7158168.007	368	-60	90	46	INAC130	461102	7160004	377	-60	90	45	INAC170	459298.0838	7159802.664	372	-60	90	42
INAC211	458694.5622	7158166.907	366	-60	90	62	INAC131	461053	7160002	375	-60	90	17	INAC171	459205.7963	7159798.395	372	-60	90	53
INAC212	458604.13	7158171.946	366	-60	90	67	INAC132	460993.5448	7160002.213	375	-60	90	35	INAC172	459100.9174	7159799.615	372	-60	90	50
INAC213	458492.3741	7158170.826	365	-60	90	66	INAC133	460947.4918	7159999.984	374	-60	90	32	INAC173	458987.4133	7159798.055	374	-60	90	48
INAC214	458403.5746	7158174.535	368	-60	90	52	INAC134	460900.0204	7160000.944	372	-60	90	18	INAC174	458902.7368	7159795.905	373	-60	90	57
INAC215	458303.3299	7158176.095	367	-60	90	49	INAC135	460846.8512	7159998.574	373	-60	90	16	INAC175	458802.7147	7159792.496	370	-60	90	40
INAC216	457988.8663	7158173.006	368	-60	90	68	INAC136	460799.3634	7160004.073	374	-60	90	25	INAC176	458699.5344	7159793.836	371	-60	90	42
INAC217	457895.1441	7158178.465	367	-60	90	70	INAC137	460748.0578	7160004.153	374	-60	90	33	INAC177	467323.3352	7168282.948	392	-90	90	26
INAC218	457795.5837	7158182.134	369	-60	90	56	INAC138	460696.6944	7160002.453	374	-60	90	27	INAC178	467375.0697	7168191.726	394	-90	0	16
INAC219	457700.4762	7158180.834	368	-60	90	51	INAC139	460648.5387	7160003.083	375	-60	90	41	INAC179	467436.5177	7168104.494	389	-90	0	12
INAC220	457585.5621	7158183.464	369	-60	90	54	INAC140	460600.0614	7159999.954	374	-60	90	55	INAC180	467503.1524	7167997.566	392	-90	0	30
INAC221	457497.7851	7158183.943	369	-60	90	71	INAC141	460548.2857	7160003.223	373	-60	90	14	INAC181	467579.2945	7167900.756	395	-90	0	27
INAC222	457392.6258	7158186.383	369	-60	90	60	INAC142	460498.9013	7160002.533	374	-60	90	20	INAC182	467651.256	7167800.486	391	-90	0	21
INAC223	457208.3065	7158184.903	368	-60	90	71	INAC143	460448.5522	7159999.284	376	-60	90	19	INAC183	467718.2617	7167700.986	392	-90	0	15
INAC224	456990.5502	7158187.633	369	-60	90	96	INAC144	460392.2166	7160002.653	376	-60	90	7	INAC184	467798.4443	7167594.758	390	-90	0	13
INAC225	456792.2706	7158191.192	370	-60	90	37	INAC145	460346.279	7159997.744	375	-60	90	6	INAC185	467925.1664	7167508.465	389	-90	0	33
INAC226	456701.3355	7158193.781	368	-60	90	41	INAC146	460302.205	7160008.922	374	-60	90	12	INAC186	468017.2065	7167442.679	391	-90	0	42
INAC227	456597.8089	7158194.871	370	-60	90	32	INAC147	460249.7367	7160002.673	374	-60	90	24	INAC187	468103.0705	7167345.109	392	-90	0	13
INAC228	456397.9214	7158191.342	370	-60	90	42	INAC148	460200.8471	7160004.293	376	-60	90	38	INAC188	468197.4195	7167237.691	389	-90	0	7
INAC229	456901.7672	7158185.793	369	-60	90	87	INAC149	460149.0879	7160000.814	375	-60	90	35	INAC189	468295.8501	7167127.643	392	-90	0	42
INAC230	459251.9235	7156803.414	366	-60	90	108	INAC150	460099.9921	7160000.774	374	-60	90	26	INAC190	468403.6315	7167026.344	390	-90	0	39
INAC231	459150.31	7156795.456	365	-60	90	93	INAC151	461402.951	7159798.645	371	-60	90	65	INAC191	468502.9527	7166935.112	390	-90	0	26
INAC232	458952.1624	7156795.516	365	-60	90	44	INAC152	461349.9879	7159800.055	372	-60	90	60	INAC192	468583.0694	7166853.909	390	-90	0	84
INAC233	458848.141	7156797.406	367	-60	90	54	INAC153	461303.704	7159800.025	372	-60	90	60	INAC193	468698.338	7166765.587	390	-90	0	91
INAC234	459050.659	7156806.114	363	-60	90	79	INAC154	461254.7567	7159800.984	371	-60	90	81	INAC194	468799.5228	7166604.919	390	-90	0	62
INAC235	458763.9262	7156804.664	370	-60	90	77	INAC155	461198.2561	7159799.935	371	-60	90	58	INAC195	468848.5196	7166480.345	388	-90	0	83
INAC236	458552.7666	7156796.156	366	-60	90	103	INAC156	461145.0292	7159803.004	372	-60	90	67	INAC196	468855.0338	7166399.071	388	-90	0	78
INAC237	458946.514	7156999.145	366	-60	90	33	INAC157	461051.0513	7160204.042	374	-60	90	61	INAC197	468898.3822	7166191.973	388	-90	0	93
INAC238	458847.9844	7156997.845	368	-60	90	78	INAC158	460503.7994	7159801.104	374	-60	90	10	INAC198	468959.4427	7166015.049	386	-90	0	84
INAC239	458802.1127	7157102.134	365	-60	90	60	INAC159	460408.9557	7159805.683	373	-60	90	26	INAC199	469042.4948	7165785.236	387	-60	90	83
INAC240	458698.6933	7157096.275	364	-60	90	38	INAC160	460297.5955	7159800.374	372	-60	90	35	INAC200	469150.9442	7165605.203	388	-60	90	81

	_					_	
HoleID	East	North	RL	Dip	Azimuth	Depth	HoleID
INAC241	458651.7333	7157097.895	363	-60	90	42	INAC281
INAC242	458702.0247	7157219.54	366	-60	90	49	INAC282
INAC243	458651.1066	7157206.092	365	-60	90	27	INAC283
INAC244	458595.142	7157198.714	367	-60	90	32	INAC284
INAC245	458952.0222	7157297.174	367	-60	90	79	INAC285
INAC246	458853.072	7157303.063	366	-60	90	60	INAC286
INAC247	458804.1824	7157307.562	367	-60	90	63	INAC287
INAC248	458703.2698	7157305.802	363	-60	90	41	INAC288
INAC249	458649.8037	7157298.894	364	-60	90	34	INAC289
INAC250	458598.9516	7157297.394	365	-60	90	26	INAC290
INAC251	458550.3011	7157295.594	368	-60	90	23	INAC291
INAC252	458504.7923	7157306.742	369	-60	90	33	INAC292
INAC253	459045.6125	7157400.123	366	-60	90	44	INAC293
INAC254	458945.7801	7157398.253	364	-60	90	44	INAC294
INAC255	458851.1673	7157402.612	366	-60	90	49	INAC295
INAC256	458749.7021	7157405.852	366	-60	90	14	INAC296
INAC257	458655.9139	7157401.573	365	-60	90	16	INAC297
INAC258	458550.9031	7157391.715	366	-60	90	15	INAC298
INAC259	458455.1771	7157395.074	366	-60	90	56	INAC299
INAC260	458356.2764	7157419.679	367	-60	90	55	INAC300
INAC261	458449.0587	7157297.034	368	-60	90	55	INAC30
INAC262	458396.7883	7157298.324	366	-60	90	71	INAC302
INAC263	458303.3628	7157304.223	366	-60	90	103	INAC303
INAC264	458302.6619	7157206.442	366	-60	90	40	INAC304
INAC265	458254.3001	7157205.073	368	-60	90	54	INAC305
INAC266	458451.0871	7157099.704	366	-60	90	64	INAC306
INAC267	458355.2787	7157094.645	365	-60	90	25	INAC307
INAC268	458399.732	7157097.325	365	-60	90	69	INAC308
INAC269	458297.5907	7157094.905	364	-60	90	78	INAC309
INAC270	458197.5357	7157096.915	363	-60	90	52	INAC310
INAC271	458379.7441	7156973.68	365	-60	90	30	INAC31
INAC272	458254.9185	7157008.513	363	-60	90	39	INAC312
INAC273	458152.637	7156995.105	365	-60	90	63	
INAC274	458452.1509	7156794.396	358	-60	90	77	INAC313
INAC275	458250.4575	7156797.966	362	-60	90	37	
INAC276	458148.2338	7156800.865	357	-60	90	42	
INAC277	458047.2881	7156798.106	362	-60	90	79	
INAC278	456026.8666	7157172.169	354	-90	0	26	
INAC279	456048.545	7157137.037	368	-90	0	25	
INAC280	456203.3937	7157002.434	358	-90	0	16	

HoleID	East	North	RL	Dip	Azimuth	Depth
INAC281	456308.5447	7156913.302	360	-90	0	14
INAC282	456424.5967	7156822.87	360	-90	0	14
INAC283	456599.4581	7156676.28	360	-90	0	36
INAC284	456804.425	7156488.019	368	-90	0	67
INAC285	456884.4839	7156403.886	368	-90	0	55
INAC286	456995.407	7156291.739	375	-90	0	62
INAC287	457085.0723	7156205.096	376	-90	0	51
INAC288	457199.3432	7156104.147	376	-90	0	43
INAC289	457293.1892	7156031.901	371	-90	0	36
INAC290	457399.3132	7155950.628	373	-90	0	64
INAC291	457600.1325	7155798.779	378	-90	0	92
INAC292	454903.1889	7155590.981	382	-90	0	27
INAC293	455300.2263	7155253.34	385	-90	0	13
INAC294	455396.7357	7155184.674	384	-90	0	25
INAC295	455492.874	7155118.217	384	-90	0	29
INAC296	455614.1621	7155060.149	380	-90	0	33
INAC297	455701.8237	7155001.981	382	-90	0	22
INAC298	455803.0332	7154877.626	382	-90	0	20
INAC299	455920.3303	7154778.007	378	-90	0	42
INAC300	455983.8646	7154675.898	351	-90	0	43
INAC301	456039.0375	7154591.365	357	-90	0	35
INAC302	456100.0815	7154511.601	356	-90	0	41
INAC303	456221.2212	7154406.802	358	-90	0	84
INAC304	456407	7154357	363	-90	0	71
INAC305	461547.3439	7159698.855	374	-90	0	44
INAC306	461447.594	7159701.105	378	-90	0	52
INAC307	461348.5119	7159709.133	376	-90	0	61
INAC308	461250.0235	7159702.084	381	-90	0	78
INAC309	461101.0046	7159702.314	387	-90	0	68
INAC310	460947.7639	7159698.875	396	-90	0	57
INAC311	460849.9187	7159703.794	399	-90	0	20
INAC312	460751.8921	7159698.515	401	-90	0	14
INAC313	460648.1429	7159696.995	401	-90	0	11

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Aircore (AC) drilling samples were collected as 1-m samples from the rig cyclone and placed on the ground in separate piles. These 1-m sample piles were then sampled using a plastic PVC tube ("spear") to collect a composite sample in the ratio of one sample for every four metres. The 4-m composite samples were then sent for analysis. The Competent Person considers the quality of the sampling to be fit for the purpose of early/reconnaissance exploration.
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary airblast, auger, Bangka, sonic, etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	Aircore to blade refusal at EOH with a face sampling bit.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Chip recoveries were monitored for consistent sample size for each metre. Appropriate measures were taken to maximise recovery and ensure representative nature of the samples, including efforts to keep the drill holes as dry as possible. No relationship between recovery and grade has been observed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 All drill holes are logged in their entirety. Qualitative descriptions of mineralogy, mineralisation, weathering, lithology, colour and other features are recorded. A sample of every metre is permanently retained in chip trays for any follow-up logging. Logging is sufficient to support early exploration studies.
Sub-sampling and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Chips were sampled with a "spear" (PVC tube) from the 1m sample piles and composited to make roughly 4-kg, 4-m composite samples. Where a sample was wet, it was dried in the sun before composite samples were collected. Samples underwent sample preparation at ALS Perth following method PREP31: Dry, Crush, Split and Pulverize – samples were first weighed, then crushed to >70% of the sample passing 2 mm, then split using riffle splitter. A sample split of up to 250 g was then pulverized to >85 % of the sample passing -75 microns. Duplicates were submitted for analysis at a rate of approximately 1 per 20 samples, for quality control. The variability observed in duplicate sample results are considered appropriate by the Competent Person. The quality of the sub-sampling is considered fit for the purpose of early/reconnaissance exploration. The Competent Person considers drill sample sizes to be appropriate for the style of mineralisation and the nature of the drilling program.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make model, reading times, calibration factors applied and their derivation etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 Samples underwent sample preparation and geochemical analysis by ALS Perth. Rare Earth Elements were analysed first by Lithium Borate Fusion and ICP-MS finish (ALS Method code ME-MS81) Standards and blanks were submitted in the sample stream at a rate of approximately 1 per 20 samples. The laboratory conducted its own checks which were also monitored. No contamination was detected. The Competent Person considers the accuracy and precision of the geochemical data to be fit for purpose.
Verification of assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The Desert Metals Exploration Manager has personally inspected all core and chips. No twin holes have been completed. Primary drill data were collected manually on paper and digitally using Excel software before being transferred to the master database in mining software package Micromine. Total Rare Earth Elements (TREE) are calculated as the sum of La + Ce + Pr + Nd + Sm + Eu + Gd + Tb + Dy + Ho + Er + Tm + Yb + Y + Lu TREE-Ce are calculated as the sum of La + Pr + Nd + Sm + Eu + Gd + Tb + Dy + Ho + Er + Tm + Yb + Y + Lu Magnetic Rare Earths (MREE) are calculated as the sum of Nd + Pr + Tb + Dy Scandium converted to Sc2O3 using standard stochiometric conversion 1.5338
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control 	 Drill hole collar locations were surveyed using handheld GPS. Expected accuracy for collar surveys is ± 3 m. Down-hole surveys were taken by north-seeking gyro with readings at the surface and then approximately every 3 m. The grid system is MGA GDA94 (zone 50), local easting and northing are MGA. Topographic surface uses handheld GPS elevation data, which is adequate for the current stage of the project.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample composting has been applied. 	 Drilling to date has been reconnaissance in nature; the spacing is insufficient to make any conclusions as to the context, size, or extent of the mineralisation. Data spacing and distribution is not sufficient to allow the estimation of mineral resources. Drill samples were composted on site to create 4-m composite samples, with 1-m samples taken near end of hole.
Orientation of data in relation to geological structure	 Whether the orientation of the sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 It is not known whether the orientation of the sampling achieved unbiased sampling of possible structures; however, it is considered unlikely by the Competent Person. It is not known if the relationship between the drilling orientation and the orientation of key mineralised structures has introduced a sampling bias; however, it is considered unlikely by the Competent Person.
Sample security	The measures taken to ensure sample security.	• Samples were sealed in polyweave bags that were cable- tied closed and stored securely on site until transported by company personnel to the lab.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been conducted at this stage.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Surveys were conducted within DM1 100%-owned Exploration Licenses E09/2351 and E09/2330 All tenements are in good standing with DMIRS. DM1 is unaware of any impediments for exploration on these licenses.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties	 The tenements have had very limited published or open file exploration work for magmatic nickel type deposits. Limited exploration undertaken to date by past explorers was mostly focused on iron ore, and, to a lesser extent, gold. The main exploration that is relevant to Desert Metals is described in the prospectus downloadable from the Company's website.
Geology	Deposit type, geological setting and style of mineralisation.	 The project covers regions of the Narryer Terrane in the Yilgarn Craton, said to represent reworked remnants of greenstone sequences that are prospective for intrusion-hosted Ni-Cu-(Co)- (PGEs) and orogenic gold mineralisation. Nickel-sulphide mineralisation is anticipated to be related to mantle-derived (mafic and ultramafic) intrusives intersected by deep structures. The REE mineralisation is considered to occur in deeply weathered lateritic and saprolitic clay layers of the Narryer terrane.

Criteria	JORC Code explanation	Commentary
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collars elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All information provided in tables and appendices.
Data aggregation methods	 In reporting Exploration Results, weighting average techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporated short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation shown in detail. The assumption used for any reporting of metal equivalent values should be clearly stated. 	 Samples used in the leach testing (4m composites) are reported in Table1. No maximum minimum or cutoff grades are used Assay results of REE are reported in ppm Composite sample was made up in equal parts from the five Main Zone deposit samples No metal equivalent values are used.
Relationship between mineralisation	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	• The relationship between drill hole orientations and mineralisation is unknown at this stage. All results are reported as downhole intervals/widths.
widths and intercept lengths	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	All results are reported as downhole intervals/widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	The report is of leach testwork. No Significant discovery is being reported

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All results are reported transparently in the report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The report consists of metallurgical test results. Meaningful and material data have been reported in the body of the report.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Further work is proposed in the main body of this report.