

### Excellent Leach Recoveries of Rare Earth Elements at Innouendy Confirms Economic Significance of Recent High-Grade Intersections

### **Exploration Update**

- The economic significance of the previously reported Rare Earth Element (REE) intercepts has been confirmed by weak acid digest analysis:
  - Excellent leach recoveries, particularly from the high-grade samples
- Assays from an additional 95 samples are expected to be received shortly to establish the full thickness of each intercept downhole, as well continuity of mineralisation between holes
- A circa 20,000m program of Aircore and RC drilling is planned at Innouendy to follow-up the highgrade REE's and also the nickel and platinum-palladium (PGE) results. Aircore drilling is scheduled to commence in mid-July.
- REE expert Dr John Mair has been engaged as an advisor to the Company.
- Initial RC drilling at Dingo Pass has been completed:
  - Thick intercepts of mafic intrusive rocks in several holes, with traces of nickel-copper sulphides.
  - The targeted massive sulphide conductors were not intersected by the majority of holes, with downhole EM planned to guide follow-up drilling.
- Belele drilling assay results are still pending:
  - A Program of Work (POW) permit application for 12,000m of RC and RAB/Aircore drilling has been submitted for approval.

| Hala     | Internel    | TREO        | 14050         | Nd+Pr    | TOCO      | Deserver   | MREO                        | Deserver | Nd+Pr   | D        |
|----------|-------------|-------------|---------------|----------|-----------|------------|-----------------------------|----------|---------|----------|
| Hole     | Interval    | TREO        | MREO          | Na+Pr    | TREO      | Recovery   | IVIREO                      | Recovery | Na+Pr   | Recovery |
|          |             |             |               |          |           | %          |                             | %        |         | %        |
|          |             | Lithium Boi | rate Fusion , | Assays   | weak acid | digest Ass | ays                         |          |         |          |
| INAC027  | 4m from 20m | 4376 ppm    | 1349 ppm      | 1095 ppm | 3452 ppm  | 79%*       | 1219 ppm                    | 90%      | 966 ppm | 89%      |
| INAC025  | 4m from 16m | 2786 ppm    | 676 ppm       | 602 ppm  | 2155 ppm  | 77%*       | 566 ppm                     | 84%      | 503 ppm | 84%      |
| INAC004  | 4m from 36m | 2428 ppm    | 301 ppm       | 258 ppm  | 1025 ppm  | 42%*       | 197 ppm                     | 66%      | 167 ppm | 64%      |
| INAC027  | 4m from 24m | 2199 ppm    | 457 ppm       | 373 ppm  | 1225 ppm  | 56%        | 290 ppm                     | 64%      | 227 ppm | 60%      |
| INAC005  | 4m from 32m | 2185 ppm    | 484 ppm       | 419 ppm  | 1320 ppm  | 60%*       | 406 ppm                     | 84%      | 344 ppm | 80%      |
| INAC0027 | 4m from 32m | 2060 ppm    | 417 ppm       | 349 ppm  | 1235 ppm  | 60%        | 280 ppm                     | 67%      | 226 ppm | 64%      |
|          |             |             |               |          |           |            | ery exceede<br>s are higher |          | ,       | s TREO   |

Table 1. Comparison of Lithium Borate Fusion Assays with Weak Acid Digest Assays.

#### **Rare Earth Elements**

The initial batch of 11 samples that were analysed by Lithium borate fusion, ICP-MS finish were re-analysed by weak acid (Aqua Regia) digest to test the level of REE's that can be easily leached. As shown in Table 1, the REE's at Innouendy are easily leached, with recoveries particularly good (>80%) for the high-grade zones of high value REE's. The Company views these results as a step change in the potential economic significance of the REE's at Innouendy as development scenarios would likely be lower capex given the ease of extracting the minerals via simple leach.

ETALS

Limited

An additional 95 adjacent samples have now been re-submitted for full-suite REE analysis. These samples will help establish the full thickness of each intercept downhole, as well continuity of mineralisation between holes. Once these results have been received all significant intercepts will also be analysed by weak acid digest to confirm leachable recoveries.

An extensive program of Aircore drilling to test the extent of the shallow, clay hosted REE mineralisation is now planned to commence in mid-July. This program has been planned with sufficiently close hole spacings to allow, if consistent grades and widths are intercepted, for the Company to work towards defining an inferred resource.

Given the potential significance of the REE's encountered at Innouendy, the Company has engaged the services of Dr John Mair as an advisor. Dr Mair has deep knowledge of the REE landscape, having taken a complex REE project from discovery through various feasibility studies to development ready status while Managing Director of Greenland Minerals Ltd.

Desert Metals Managing Director, Rob Stuart, commented:

"We are delighted to have secured the services of John, whose experience, expertise and extensive network of technical and commercial contacts in the REE space will be invaluable as we seek to rapidly move this project forward."

#### **Dingo Pass**

The initial drilling program at Dingo Pass has been completed, with seven RC holes drilled for 1678m (Table 2, Figure 1).

| Tuble Li Billin | ig culling ( |          |     |         |                    |
|-----------------|--------------|----------|-----|---------|--------------------|
| Hole ID         | Easting      | Northing | Dip | Azimuth | Total Depth<br>(m) |
| DRC001          | 524156       | 7167170  | -80 | 200     | 256                |
| DRC002          | 524486       | 7166753  | -80 | 220     | 226                |
| DRC003          | 525040       | 7168245  | -60 | 030     | 142                |
| DRC004          | 522183       | 7167289  | -60 | 360     | 250                |
| DRC005          | 521647       | 7167647  | -65 | 055     | 276                |
| DRC006          | 521550       | 7167782  | -65 | 020     | 300                |
| DRC007          | 521309       | 7168166  | -60 | 090     | 228                |

#### Table 2. Drilling Summary





Figure 1: Dingo Pass Drill Hole Location Plan.

The drilling completed has in most cases not intersected sufficient quantities of sulphides to explain the conductors at Dingo Pass. This means the targets are untested and still "live". Downhole EM will now be used to more precisely define the conductor's location and guide follow-up drilling.

Several holes, particularly at the Dome and Komatiite prospects, did intersect metamorphosed mafic intrusions with traces of disseminated copper (Cu) and nickel (Ni) bearing sulphides, which provides encouragement that the conductors may be Ni-Cu massive sulphides.

Based on the drill results, the Company now infers that the targeted host intrusions have been deformed and metamorphosed. In other Ni provinces where this is the case, such as the Thomson Belt in Manitoba, Canada, the sulphides are often reworked into fold hinges and other structurally complex positions. This makes their associated conductance difficult to model and would explain the relative lack of success in intersecting the targeted conductors on the first pass. Desert Metals Managing Director, Rob Stuart, commented:

"Until we intersect mineralisation that explains these very conductive anomalies the Dingo Pass prospects remain very much alive. While we would have liked to have hit extensive massive Ni-Cu mineralisation with the first drill phase, to not do so is not unusual. The downhole EM will help to pinpoint targets for our next phase of drilling. The Dingo Pass conductors have been confirmed to lie in the right type of rocks and for now remain unexplained."

ETALS

Limited

Authorised by the Board of Desert Metals Limited.

#### **Rob Stuart**

Tony Worth

Managing Director

**Technical Director** 

#### **Competent Person Statement**

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Dr Rob Stuart, a competent person who is a member of the Australasian Institute of Mining and Metallurgy. Dr Stuart has a minimum of five years' experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a competent person as defined in the 2012 Edition of the Joint Ore Reserves. Dr Stuart is a related party of the Company, being a Director, and holds securities in the Company. Dr Stuart has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

| Table 3: Rare Earth Oxide | e (ppm) Lithium Bora | te Fusion/ICP-MS re. | sults of all re-analy | rsed samples (As reported | l previously: ASX release 23 <sup>rd</sup> May 2022). |
|---------------------------|----------------------|----------------------|-----------------------|---------------------------|-------------------------------------------------------|
|                           |                      |                      |                       |                           |                                                       |

| Hole_ID | From | То | TREO    | TREO-Ce | LREO    | HREO   | CREO    | MREO    | CeO <sub>2</sub> | <u>Dy<sub>2</sub>O<sub>3</sub></u> | $Er_2O_3$ | Eu <sub>2</sub> O <sub>3</sub> | <u>Gd 2 O 3</u> | Ho <sub>2</sub> O <sub>3</sub> | $La_2O_3$ | Lu <sub>2</sub> O <sub>3</sub> | <u>Nd 2 O 3</u> | <u>Pr<sub>6</sub>O<sub>11</sub></u> | <u>Sm<sub>2</sub>O<sub>3</sub></u> | <u>Tb₄O</u> z | Tm <sub>2</sub> O <sub>3</sub> | Y <sub>2</sub> O <sub>3</sub> | Yb <sub>2</sub> O <sub>3</sub> |
|---------|------|----|---------|---------|---------|--------|---------|---------|------------------|------------------------------------|-----------|--------------------------------|-----------------|--------------------------------|-----------|--------------------------------|-----------------|-------------------------------------|------------------------------------|---------------|--------------------------------|-------------------------------|--------------------------------|
| INAC004 | 36   | 40 | 2427.74 | 787.83  | 2371.82 | 55.93  | 231.09  | 301.27  | 1639.91          | 6.43                               | 2.54      | 2.89                           | 11.87           | 1.02                           | 450.36    | 0.23                           | 193.04          | 66.94                               | 21.57                              | 1.42          | 0.33                           | 27.30                         | 1.89                           |
| INAC004 | 40   | 44 | 1249.53 | 530.92  | 1188.96 | 60.57  | 189.03  | 226.92  | 718.61           | 6.12                               | 2.96      | 2.56                           | 10.71           | 1.09                           | 261.53    | 0.27                           | 145.80          | 45.67                               | 17.34                              | 1.28          | 0.35                           | 33.27                         | 1.96                           |
| INAC005 | 24   | 28 | 167.90  | 101.32  | 154.10  | 13.80  | 30.27   | 34.37   | 66.58            | 1.30                               | 0.88      | 0.47                           | 1.82            | 0.25                           | 56.53     | 0.18                           | 20.88           | 7.31                                | 2.81                               | 0.26          | 0.25                           | 7.37                          | 1.01                           |
| INAC005 | 28   | 32 | 636.99  | 345.86  | 612.01  | 24.98  | 98.89   | 127.81  | 291.13           | 2.59                               | 1.35      | 1.30                           | 4.33            | 0.49                           | 200.55    | 0.23                           | 82.00           | 29.85                               | 8.49                               | 0.55          | 0.25                           | 12.45                         | 1.43                           |
| INAC005 | 32   | 36 | 2184.90 | 1035.12 | 2110.38 | 74.51  | 371.12  | 484.31  | 1149.78          | 8.45                               | 3.33      | 5.36                           | 17.58           | 1.37                           | 504.30    | 0.28                           | 321.93          | 97.15                               | 37.22                              | 1.99          | 0.45                           | 33.40                         | 2.31                           |
| INAC008 | 12   | 16 | 1407.24 | 610.01  | 1358.51 | 48.73  | 208.10  | 270.07  | 797.23           | 5.44                               | 2.40      | 3.02                           | 10.56           | 0.90                           | 308.45    | 0.24                           | 175.54          | 56.19                               | 21.10                              | 1.24          | 0.37                           | 22.86                         | 1.71                           |
| INAC024 | 0    | 4  | 1105.04 | 178.82  | 1040.36 | 64.67  | 90.52   | 86.36   | 926.21           | 7.93                               | 4.75      | 1.60                           | 7.68            | 1.58                           | 44.80     | 0.66                           | 46.19           | 13.59                               | 9.57                               | 1.40          | 0.77                           | 33.40                         | 4.92                           |
| INAC025 | 16   | 20 | 2785.65 | 1861.89 | 2684.63 | 101.02 | 517.49  | 676.19  | 923.76           | 9.06                               | 4.41      | 4.01                           | 21.78           | 1.64                           | 1117.68   | 0.56                           | 449.06          | 152.85                              | 41.28                              | 2.15          | 0.57                           | 53.21                         | 3.63                           |
| INAC027 | 20   | 24 | 4376.04 | 3311.01 | 3929.29 | 446.75 | 1146.78 | 1349.46 | 1065.02          | 48.32                              | 19.73     | 22.87                          | 86.10           | 8.20                           | 1659.51   | 1.80                           | 831.64          | 263.41                              | 109.70                             | 10.29         | 2.24                           | 233.66                        | 13.55                          |
| INAC027 | 24   | 28 | 2198.70 | 1293.37 | 1977.27 | 221.43 | 448.01  | 456.54  | 905.33           | 18.13                              | 10.54     | 5.52                           | 29.16           | 3.79                           | 666.15    | 1.18                           | 279.94          | 92.92                               | 32.93                              | 3.46          | 1.32                           | 140.96                        | 7.36                           |
| INAC027 | 32   | 36 | 2060.24 | 1157.37 | 1904.18 | 156.06 | 377.99  | 417.30  | 902.87           | 13.49                              | 7.08      | 4.92                           | 22.71           | 2.55                           | 622.76    | 0.81                           | 261.27          | 87.24                               | 30.03                              | 2.56          | 0.89                           | 95.75                         | 5.31                           |
| INAC037 | 32   | 36 | 1017.31 | 184.45  | 989.16  | 28.15  | 72.17   | 88.45   | 832.86           | 3.80                               | 1.96      | 0.81                           | 4.54            | 0.64                           | 76.94     | 0.31                           | 54.12           | 17.10                               | 8.15                               | 0.74          | 0.39                           | 12.70                         | 2.27                           |
| INAC036 | 36   | 40 | 996.02  | 247.92  | 971.10  | 24.92  | 83.43   | 103.32  | 748.10           | 2.75                               | 1.34      | 0.66                           | 4.23            | 0.47                           | 127.25    | 0.18                           | 66.48           | 21.39                               | 7.89                               | 0.58          | 0.33                           | 12.95                         | 1.42                           |
| INAC035 | 36   | 37 | 1959.12 | 1386.69 | 1808.90 | 150.22 | 448.65  | 559.22  | 572.43           | 19.86                              | 8.60      | 5.50                           | 28.70           | 3.33                           | 729.48    | 1.00                           | 348.75          | 113.70                              | 44.53                              | 3.68          | 1.18                           | 70.86                         | 7.52                           |
| INAC033 | 24   | 28 | 1440.71 | 686.47  | 1319.07 | 121.64 | 262.12  | 288.09  | 754.24           | 14.12                              | 6.60      | 4.89                           | 17.40           | 2.43                           | 310.79    | 0.65                           | 173.79          | 54.74                               | 25.51                              | 2.53          | 0.89                           | 66.80                         | 5.34                           |
| INAC033 | 28   | 33 | 1770.83 | 897.44  | 1622.65 | 148.18 | 344.65  | 380.61  | 873.39           | 15.78                              | 7.90      | 5.80                           | 22.01           | 2.85                           | 409.31    | 0.74                           | 236.78          | 71.17                               | 32.00                              | 2.86          | 0.95                           | 83.43                         | 5.85                           |

 $TREO (Total Rare Earth Oxide) = La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Ho_2O_3 + Tm_2O_3 + Yb_2O_3 + Yb_2O_3 + Lu_2O_3.$ 

TREO-Ce = TREO – CeO<sub>2</sub>

- light LREO (Light Rare Earth Oxide) =  $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3$
- HREO (Heavy Rare Earth Oxide) = Eu<sub>2</sub>O<sub>3</sub> + Gd<sub>2</sub>O<sub>3</sub> + Tb<sub>4</sub>O<sub>7</sub> + Dy<sub>2</sub>O<sub>3</sub> + Ho<sub>2</sub>O<sub>3</sub> + Er<sub>2</sub>O<sub>3</sub> + Tm<sub>2</sub>O<sub>3</sub> + Yb<sub>2</sub>O<sub>3</sub> + Y<sub>2</sub>O<sub>3</sub> + Lu<sub>2</sub>O<sub>3</sub>
- Critical CREO (Critical Rare Earth Oxide) = Nd<sub>2</sub>O<sub>3</sub> + Eu<sub>2</sub>O<sub>3</sub> + Tb<sub>4</sub>O<sub>7</sub> + Dy<sub>2</sub>O<sub>3</sub> + Y<sub>2</sub>O<sub>3</sub>
- <u>Magnetic</u> MREO (Magnetic Rare Earth Oxide) =  $Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3$ .

|                                                     |                                 |                                       |                                                                                                                                                              |                                                                          | %                                             |                                                                                     | %                                                   |                                                                                      | %                                                   |                                                                                      | %                                                   |                                                                                      | %                                                    |                                                                                      | %                                                    |                                                                                     | %                                                     |                                                                                     | %                                                    |                                                                                      | %                                                   |                                                                                    | %                                                   |                                                                                     | %                                                   |
|-----------------------------------------------------|---------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|
| Hole_ID                                             | From                            | То                                    | Comment                                                                                                                                                      | TREO                                                                     | recovery                                      | TREO-Ce                                                                             | recovery                                            | LREO                                                                                 | recovery                                            | HREO                                                                                 | recovery                                            | CREO                                                                                 | recovery                                             | MREO                                                                                 | recovery                                             | Nd+Pr                                                                               | recovery                                              | CeO2                                                                                | recovery                                             | Dy2O3                                                                                | recovery                                            | Er2O3                                                                              | recovery                                            | Eu2O3                                                                               | recovery                                            |
| INAC004                                             | 36                              | 40                                    | Ce overlimit at 500ppm                                                                                                                                       | 1025.02                                                                  | 42%                                           | 410.82                                                                              | 52%                                                 | 982.12                                                                               | 41%                                                 | 42.91                                                                                | 77%                                                 | 156.89                                                                               | 68%                                                  | 197.48                                                                               | 66%                                                  | 166.79                                                                              | 64%                                                   | 614.2                                                                               | 37%                                                  | 4.80886                                                                              | 75%                                                 | 1.84675                                                                            | 73%                                                 | 2.42001                                                                             | 84%                                                 |
| INAC004                                             | 40                              | 44                                    | Ce overlimit at 500ppm                                                                                                                                       | 1088.97                                                                  | 87%                                           | 474.77                                                                              | 90%                                                 | 1029.73                                                                              | 87%                                                 | 59.23                                                                                | 98%                                                 | 181.64                                                                               | 96%                                                  | 217.75                                                                               | 97%                                                  | 181.94                                                                              | 96%                                                   | 614.2                                                                               | 85%                                                  | 6.24349                                                                              | 102%                                                | 2.60718                                                                            | 88%                                                 | 2.58212                                                                             | 101%                                                |
| INAC005                                             | 24                              | 28                                    | Zr overlimits (not REEs)                                                                                                                                     | 18.43                                                                    | 11%                                           | 10.49                                                                               | 10%                                                 | 17.14                                                                                | 11%                                                 | 1.29                                                                                 | 9%                                                  | 3.70                                                                                 | 12%                                                  | 4.49                                                                                 | 13%                                                  | 3.70                                                                                | 13%                                                   | 7.93546                                                                             | 12%                                                  | 0.13887                                                                              | 11%                                                 | 0.05832                                                                            | 7%                                                  | 0.06137                                                                             | 13%                                                 |
| INAC005                                             | 28                              | 32                                    | Zr overlimits (not REEs)                                                                                                                                     | 221.05                                                                   | 35%                                           | 106.32                                                                              | 31%                                                 | 213.22                                                                               | 35%                                                 | 7.84                                                                                 | 31%                                                 | 40.22                                                                                | 41%                                                  | 52.44                                                                                | 41%                                                  | 45.53                                                                               | 39%                                                   | 114.733                                                                             | 39%                                                  | 0.86192                                                                              | 33%                                                 | 0.34877                                                                            | 26%                                                 | 0.58474                                                                             | 45%                                                 |
| INAC005                                             | 32                              | 36                                    | Ce overlimit at 500ppm                                                                                                                                       | 1320.04                                                                  | 60%                                           | 705.84                                                                              | 68%                                                 | 1252.59                                                                              | 59%                                                 | 67.45                                                                                | 91%                                                 | 316.00                                                                               | 85%                                                  | 405.78                                                                               | 84%                                                  | 344.19                                                                              | 80%                                                   | 614.2                                                                               | 53%                                                  | 7.8847                                                                               | 93%                                                 | 2.77871                                                                            | 84%                                                 | 5.17581                                                                             | 97%                                                 |
| INAC008                                             | 12                              | 16                                    |                                                                                                                                                              | 832.77                                                                   | 59%                                           | 379.49                                                                              | 62%                                                 | 794.54                                                                               | 58%                                                 | 38.23                                                                                | 78%                                                 | 157.88                                                                               | 76%                                                  | 202.32                                                                               | 75%                                                  | 172.04                                                                              | 73%                                                   | 453.28                                                                              | 57%                                                  | 4.39569                                                                              | 81%                                                 | 1.7324                                                                             | 72%                                                 | 2.5358                                                                              | 84%                                                 |
| INAC024                                             | 0                               | 4                                     |                                                                                                                                                              | 294.63                                                                   | 27%                                           | 97.47                                                                               | 55%                                                 | 261.54                                                                               | 25%                                                 | 33.09                                                                                | 51%                                                 | 48.60                                                                                | 54%                                                  | 46.47                                                                                | 54%                                                  | 32.65                                                                               | 54%                                                   | 197.158                                                                             | 21%                                                  | 3.95957                                                                              | 50%                                                 | 2.24126                                                                            | 47%                                                 | 0.89506                                                                             | 56%                                                 |
| INAC025                                             | 16                              | 20                                    | Ce overlimit at 500ppm                                                                                                                                       | 2154.53                                                                  | 77%                                           | 1540.33                                                                             | 83%                                                 | 2080.03                                                                              | 77%                                                 | 74.50                                                                                | 74%                                                 | 423.43                                                                               | 82%                                                  | 565.86                                                                               | 84%                                                  | 503.14                                                                              | 84%                                                   | 614.2                                                                               | 66%                                                  | 6.78291                                                                              | 75%                                                 | 2.75584                                                                            | 62%                                                 | 3.83265                                                                             | 96%                                                 |
| INAC027                                             | 20                              | 24                                    | Ce overlimit at 500ppm                                                                                                                                       | 3451.76                                                                  | 79%                                           | 2837.56                                                                             | 86%                                                 | 3050.86                                                                              | 78%                                                 | 400.90                                                                               | 90%                                                 | 1011.29                                                                              | 88%                                                  | 1218.92                                                                              | 90%                                                  | 967.56                                                                              | 89%                                                   | 614.2                                                                               | 58%                                                  | 48.3182                                                                              | 100%                                                | 16.981                                                                             | 86%                                                 | 24.6633                                                                             | 108%                                                |
| INAC027                                             | 24                              | 28                                    |                                                                                                                                                              | 1224.86                                                                  | 56%                                           | 787.55                                                                              | 61%                                                 | 1075.12                                                                              | 54%                                                 | 149.74                                                                               | 68%                                                 | 284.70                                                                               | 64%                                                  | 290.37                                                                               | 64%                                                  | 226.90                                                                              | 60%                                                   | 437.31                                                                              | 48%                                                  | 14.5184                                                                              | 80%                                                 | 6.87244                                                                            | 65%                                                 | 5.26845                                                                             | 95%                                                 |
| INAC027                                             | 32                              | 36                                    |                                                                                                                                                              | 1234.71                                                                  | 60%                                           | 738.44                                                                              | 64%                                                 | 1119.98                                                                              | 59%                                                 | 114.73                                                                               | 74%                                                 | 256.07                                                                               | 68%                                                  | 280.50                                                                               | 67%                                                  | 225.86                                                                              | 64%                                                   | 496.274                                                                             | 55%                                                  | 11.2819                                                                              | 84%                                                 | 4.89418                                                                            | 69%                                                 | 4.92108                                                                             | 100%                                                |
|                                                     |                                 |                                       |                                                                                                                                                              |                                                                          |                                               |                                                                                     | %                                                   |                                                                                      | %                                                   |                                                                                      | %                                                   |                                                                                      | 01                                                   |                                                                                      | 07                                                   |                                                                                     | <i></i>                                               |                                                                                     | 07                                                   |                                                                                      | %                                                   |                                                                                    |                                                     |                                                                                     | %                                                   |
| Hole ID                                             | From                            | То                                    | Comment                                                                                                                                                      | Gd2O3                                                                    | <u>%</u><br>recovery                          | Ho2O3                                                                               | 70<br>recovery                                      | La2O3                                                                                |                                                     | Lu2O3                                                                                |                                                     |                                                                                      | <u>%</u>                                             |                                                                                      | <u>%</u>                                             |                                                                                     | <u>%</u>                                              |                                                                                     | <u>%</u>                                             |                                                                                      | 70                                                  |                                                                                    | 70                                                  |                                                                                     |                                                     |
| INAC004                                             | 36                              | 40                                    |                                                                                                                                                              |                                                                          |                                               |                                                                                     |                                                     |                                                                                      | recoverv                                            |                                                                                      | recoverv                                            | Nd2O3                                                                                | recoverv                                             | Pr6011                                                                               | recoverv                                             | Sm2O3                                                                               | recoverv                                              | Tb407                                                                               | recoverv                                             | Tm2O3                                                                                | recoverv                                            | Y2O3                                                                               | recoverv                                            | Yb2O3                                                                               |                                                     |
| INAC004                                             |                                 |                                       | Ce overlimit at 500ppm                                                                                                                                       | 8,46008                                                                  | 71%                                           |                                                                                     |                                                     |                                                                                      | recovery<br>41%                                     |                                                                                      | recovery<br>60%                                     | <u>Nd2O3</u><br>126,554                                                              | recovery<br>66%                                      | <u>Pr6011</u><br>40.2364                                                             | recovery<br>62%                                      | <u>Sm2O3</u><br>16.4083                                                             | <u>recovery</u><br>76%                                | <u>Tb407</u><br>1.01036                                                             | <u>recovery</u><br>71%                               |                                                                                      | recovery<br>62%                                     |                                                                                    |                                                     | Yb2O3                                                                               | 62%                                                 |
|                                                     | 40                              | -                                     | Ce overlimit at 500ppm<br>Ce overlimit at 500ppm                                                                                                             | 8.46008                                                                  | 71%<br>98%                                    | 0.75718                                                                             | 74%                                                 | 184.716<br>215.795                                                                   | 41%                                                 | 0.13645                                                                              | recovery<br>60%<br>82%                              | <u>Nd2O3</u><br>126.554<br>138.802                                                   | 66%                                                  | Pr6011<br>40.2364<br>43.1363                                                         | 62%                                                  | 16.4083                                                                             | recovery<br>76%<br>103%                               | <u>Tb407</u><br>1.01036<br>1.25265                                                  | 71%                                                  | 0.20558                                                                              | recovery<br>62%<br>87%                              | 22.0963                                                                            | recovery<br>81%<br>98%                              | 1.16717                                                                             | 62%                                                 |
| INAC005                                             |                                 | 44                                    | Ce overlimit at 500ppm                                                                                                                                       | 8.46008<br>10.5117<br>0.2432                                             | 98%                                           | 0.75718                                                                             |                                                     | 184.716<br>215.795                                                                   | 41%                                                 | 0.13645                                                                              | 60%                                                 | 126.554<br>138.802                                                                   |                                                      | 40.2364<br>43.1363                                                                   | 62%<br>98%                                           | 16.4083<br>17.7999                                                                  | 76%                                                   | 1.01036<br>1.25265                                                                  | 71%<br>98%                                           | 0.20558                                                                              | 62%                                                 | 22.0963<br>32.7634                                                                 | 81%                                                 | 1.16717<br>1.70805                                                                  | 62%<br>87%                                          |
| INAC005<br>INAC005                                  | 40<br>24<br>28                  | 44                                    |                                                                                                                                                              | 10.5117                                                                  |                                               | 0.75718                                                                             | 74%<br>95%                                          | 184.716                                                                              | 41%<br>83%                                          | 0.13645                                                                              | 60%<br>82%                                          | 126.554                                                                              | 66%<br>95%                                           | 40.2364                                                                              | 62%                                                  | 16.4083                                                                             | 76%<br>103%                                           | 1.01036                                                                             | 71%                                                  | 0.20558                                                                              | 62%<br>87%                                          | 22.0963                                                                            | 81%<br>98%                                          | 1.16717                                                                             | 62%                                                 |
|                                                     | 24                              | 44<br>28<br>32                        | Ce overlimit at 500ppm<br>Zr overlimits (not REEs)                                                                                                           | 10.5117<br>0.2432                                                        | 98%<br>13%                                    | 0.75718<br>1.03324<br>0.02062                                                       | 74%<br>95%<br>8%                                    | 184.716<br>215.795<br>5.12514                                                        | 41%<br>83%<br>9%                                    | 0.13645<br>0.22401<br>0.00682                                                        | 60%<br>82%<br>4%                                    | 126.554<br>138.802<br>2.79936                                                        | 66%<br>95%<br>13%                                    | 40.2364<br>43.1363<br>0.89898                                                        | 62%<br>98%<br>13%                                    | 16.4083<br>17.7999<br>0.38151                                                       | 76%<br>103%<br>14%                                    | 1.01036<br>1.25265<br>0.02823                                                       | 71%<br>98%<br>11%                                    | 0.20558<br>0.30722<br>0.00685                                                        | 62%<br>87%<br>3%                                    | 22.0963<br>32.7634<br>0.66797                                                      | 81%<br>98%<br>9%                                    | 1.16717<br>1.70805<br>0.05466                                                       | 62%<br>87%<br>5%                                    |
| INAC005                                             | 24                              | 44<br>28<br>32                        | Ce overlimit at 500ppm<br>Zr overlimits (not REEs)<br>Zr overlimits (not REEs)                                                                               | 10.5117<br>0.2432<br>1.70009                                             | 98%<br>13%<br>39%                             | 0.75718<br>1.03324<br>0.02062<br>0.13746                                            | 74%<br>95%<br>8%<br>28%                             | 184.716<br>215.795<br>5.12514<br>48.7885                                             | 41%<br>83%<br>9%<br>24%                             | 0.13645<br>0.22401<br>0.00682<br>0.02956                                             | 60%<br>82%<br>4%<br>13%                             | 126.554<br>138.802<br>2.79936<br>34.8754                                             | 66%<br>95%<br>13%<br>43%                             | 40.2364<br>43.1363<br>0.89898<br>10.6572                                             | 62%<br>98%<br>13%<br>36%                             | 16.4083<br>17.7999<br>0.38151<br>4.16296                                            | 76%<br>103%<br>14%<br>49%                             | 1.01036<br>1.25265<br>0.02823<br>0.18584                                            | 71%<br>98%<br>11%<br>34%                             | 0.20558<br>0.30722<br>0.00685<br>0.04226                                             | 62%<br>87%<br>3%<br>17%                             | 22.0963<br>32.7634<br>0.66797<br>3.70811                                           | 81%<br>98%<br>9%<br>30%                             | 1.16717<br>1.70805<br>0.05466<br>0.23913                                            | 62%<br>87%<br>5%<br>17%                             |
| INAC005<br>INAC005                                  | 24<br>28<br>32                  | 44<br>28<br>32                        | Ce overlimit at 500ppm<br>Zr overlimits (not REEs)<br>Zr overlimits (not REEs)                                                                               | 10.5117<br>0.2432<br>1.70009<br>15.7906                                  | 98%<br>13%<br>39%<br>90%                      | 0.75718<br>1.03324<br>0.02062<br>0.13746<br>1.15696                                 | 74%<br>95%<br>8%<br>28%<br>84%                      | 184.716<br>215.795<br>5.12514<br>48.7885<br>258.016                                  | 41%<br>83%<br>9%<br>24%<br>51%                      | 0.13645<br>0.22401<br>0.00682<br>0.02956<br>0.20354                                  | 60%<br>82%<br>4%<br>13%<br>72%                      | 126.554<br>138.802<br>2.79936<br>34.8754<br>270.605                                  | 66%<br>95%<br>13%<br>43%<br>84%                      | 40.2364<br>43.1363<br>0.89898<br>10.6572<br>73.5855                                  | 62%<br>98%<br>13%<br>36%<br>76%                      | 16.4083<br>17.7999<br>0.38151<br>4.16296<br>36.1795                                 | 76%<br>103%<br>14%<br>49%<br>97%                      | 1.01036<br>1.25265<br>0.02823<br>0.18584<br>1.7349                                  | 71%<br>98%<br>11%<br>34%<br>87%                      | 0.20558<br>0.30722<br>0.00685<br>0.04226<br>0.32321                                  | 62%<br>87%<br>3%<br>17%<br>73%                      | 22.0963<br>32.7634<br>0.66797<br>3.70811<br>30.6046                                | 81%<br>98%<br>9%<br>30%<br>92%                      | 1.16717<br>1.70805<br>0.05466<br>0.23913<br>1.79915                                 | 62%<br>87%<br>5%<br>17%<br>78%                      |
| INAC005<br>INAC005<br>INAC008                       | 24<br>28<br>32                  | 44<br>28<br>32<br>36<br>16<br>4       | Ce overlimit at 500ppm<br>Zr overlimits (not REEs)<br>Zr overlimits (not REEs)                                                                               | 10.5117<br>0.2432<br>1.70009<br>15.7906<br>8.20651                       | 98%<br>13%<br>39%<br>90%<br>78%               | 0.75718<br>1.03324<br>0.02062<br>0.13746<br>1.15696<br>0.67355                      | 74%<br>95%<br>8%<br>28%<br>84%<br>74%               | 184.716<br>215.795<br>5.12514<br>48.7885<br>258.016<br>152.464                       | 41%<br>83%<br>9%<br>24%<br>51%<br>49%               | 0.13645<br>0.22401<br>0.00682<br>0.02956<br>0.20354<br>0.14896                       | 60%<br>82%<br>4%<br>13%<br>72%<br>62%               | 126.554<br>138.802<br>2.79936<br>34.8754<br>270.605<br>131.803                       | 66%<br>95%<br>13%<br>43%<br>84%<br>75%               | 40.2364<br>43.1363<br>0.89898<br>10.6572<br>73.5855<br>40.2364                       | 62%<br>98%<br>13%<br>36%<br>76%<br>72%               | 16.4083<br>17.7999<br>0.38151<br>4.16296<br>36.1795<br>16.7562                      | 76%<br>103%<br>14%<br>49%<br>97%<br>79%               | 1.01036<br>1.25265<br>0.02823<br>0.18584<br>1.7349<br>0.92567                       | 71%<br>98%<br>11%<br>34%<br>87%<br>75%               | 0.20558<br>0.30722<br>0.00685<br>0.04226<br>0.32321<br>0.20215                       | 62%<br>87%<br>3%<br>17%<br>73%<br>55%               | 22.0963<br>32.7634<br>0.66797<br>3.70811<br>30.6046<br>18.2231                     | 81%<br>98%<br>9%<br>30%<br>92%<br>80%               | 1.16717<br>1.70805<br>0.05466<br>0.23913<br>1.79915<br>1.18425                      | 62%<br>87%<br>5%<br>17%<br>78%<br>69%               |
| INAC005<br>INAC005<br>INAC008<br>INAC024            | 24<br>28<br>32<br>12<br>0       | 44<br>28<br>32<br>36<br>16<br>4<br>20 | Ce overlimit at 500ppm<br>Zr overlimits (not REEs)<br>Zr overlimits (not REEs)<br>Ce overlimit at 500ppm                                                     | 10.5117<br>0.2432<br>1.70009<br>15.7906<br>8.20651<br>3.97647            | 98%<br>13%<br>39%<br>90%<br>78%<br>52%        | 0.75718<br>1.03324<br>0.02062<br>0.13746<br>1.15696<br>0.67355<br>0.7251            | 74%<br>95%<br>8%<br>28%<br>84%<br>74%<br>46%        | 184.716<br>215.795<br>5.12514<br>48.7885<br>258.016<br>152.464<br>26.5053            | 41%<br>83%<br>9%<br>24%<br>51%<br>49%<br>59%        | 0.13645<br>0.22401<br>0.00682<br>0.02956<br>0.20354<br>0.14896<br>0.31498            | 60%<br>82%<br>4%<br>13%<br>72%<br>62%<br>48%        | 126.554<br>138.802<br>2.79936<br>34.8754<br>270.605<br>131.803<br>25.3109            | 66%<br>95%<br>13%<br>43%<br>84%<br>75%<br>55%        | 40.2364<br>43.1363<br>0.89898<br>10.6572<br>73.5855<br>40.2364<br>7.33438            | 62%<br>98%<br>13%<br>36%<br>76%<br>72%<br>54%        | 16.4083<br>17.7999<br>0.38151<br>4.16296<br>36.1795<br>16.7562<br>5.2298            | 76%<br>103%<br>14%<br>49%<br>97%<br>79%<br>55%        | 1.01036<br>1.25265<br>0.02823<br>0.18584<br>1.7349<br>0.92567<br>0.65985            | 71%<br>98%<br>11%<br>34%<br>87%<br>75%<br>47%        | 0.20558<br>0.30722<br>0.00685<br>0.04226<br>0.32321<br>0.20215<br>0.32093            | 62%<br>87%<br>3%<br>17%<br>73%<br>55%<br>42%        | 22.0963<br>32.7634<br>0.66797<br>3.70811<br>30.6046<br>18.2231<br>17.7786          | 81%<br>98%<br>9%<br>30%<br>92%<br>80%<br>53%        | 1.16717<br>1.70805<br>0.05466<br>0.23913<br>1.79915<br>1.18425<br>2.22047           | 62%<br>87%<br>5%<br>17%<br>78%<br>69%<br>45%        |
| INAC005<br>INAC005<br>INAC008<br>INAC024<br>INAC025 | 24<br>28<br>32<br>12<br>0<br>16 | 44<br>28<br>32<br>36<br>16<br>4<br>20 | Ce overlimit at 500ppm<br>Zr overlimits (not REEs)<br>Zr overlimits (not REEs)<br>Ce overlimit at 500ppm<br>Ce overlimit at 500ppm<br>Ce overlimit at 500ppm | 10.5117<br>0.2432<br>1.70009<br>15.7906<br>8.20651<br>3.97647<br>18.1535 | 98%<br>13%<br>39%<br>90%<br>78%<br>52%<br>83% | 0.75718<br>1.03324<br>0.02062<br>0.13746<br>1.15696<br>0.67355<br>0.7251<br>1.09395 | 74%<br>95%<br>8%<br>28%<br>84%<br>74%<br>46%<br>67% | 184.716<br>215.795<br>5.12514<br>48.7885<br>258.016<br>152.464<br>26.5053<br>926.512 | 41%<br>83%<br>9%<br>24%<br>51%<br>49%<br>59%<br>83% | 0.13645<br>0.22401<br>0.00682<br>0.02956<br>0.20354<br>0.14896<br>0.31498<br>0.25244 | 60%<br>82%<br>4%<br>13%<br>72%<br>62%<br>48%<br>45% | 126.554<br>138.802<br>2.79936<br>34.8754<br>270.605<br>131.803<br>25.3109<br>373.248 | 66%<br>95%<br>13%<br>43%<br>84%<br>75%<br>55%<br>83% | 40.2364<br>43.1363<br>0.89898<br>10.6572<br>73.5855<br>40.2364<br>7.33438<br>129.892 | 62%<br>98%<br>13%<br>36%<br>76%<br>72%<br>54%<br>85% | 16.4083<br>17.7999<br>0.38151<br>4.16296<br>36.1795<br>16.7562<br>5.2298<br>36.1795 | 76%<br>103%<br>14%<br>49%<br>97%<br>79%<br>55%<br>88% | 1.01036<br>1.25265<br>0.02823<br>0.18584<br>1.7349<br>0.92567<br>0.65985<br>1.59963 | 71%<br>98%<br>11%<br>34%<br>87%<br>75%<br>47%<br>74% | 0.20558<br>0.30722<br>0.00685<br>0.04226<br>0.32321<br>0.20215<br>0.32093<br>0.30837 | 62%<br>87%<br>3%<br>17%<br>73%<br>55%<br>42%<br>54% | 22.0963<br>32.7634<br>0.66797<br>3.70811<br>30.6046<br>18.2231<br>17.7786<br>37.97 | 81%<br>98%<br>9%<br>30%<br>92%<br>80%<br>53%<br>71% | 1.16717<br>1.70805<br>0.05466<br>0.23913<br>1.79915<br>1.18425<br>2.22047<br>1.7536 | 62%<br>87%<br>5%<br>17%<br>78%<br>69%<br>45%<br>48% |

% Recovery = Weak acid digest value/Lithium borate fusion value X 100

| Hole ID                                                                   | From                                                       | То                                                                  | Au                                                                          | Ag                                                         | AI                                                                        | As                                                     | В                                                                   | Ва                                                              | Ве                                                                   | Bi                                                          | Са                                                            | Cd                                                                 | Ce                                                                    | Co                                                            | Cr                                                                   | Cs                                                                   | Cu                                                            | Fe                                                          | Ga                                                                  | Ge                                                           | Hf                                                     | Hg                                                          | In                                                             | к                                                                | La                                                              | Li                                                              | Mg                                                                 | Mn                                                                  | Мо                                                       | Na                                                             | Nb                                                               | Ni                                                                  | Р                                                                  | Pb                                                            | Pd     |
|---------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|--------|
|                                                                           | m                                                          | m                                                                   | ppm                                                                         | ppm                                                        | %                                                                         | ppm                                                    | ppm                                                                 | ppm                                                             | ppm                                                                  | ppm                                                         | %                                                             | ppm                                                                | ppm                                                                   | ppm                                                           | ppm                                                                  | ppm                                                                  | ppm                                                           | %                                                           | ppm                                                                 | ppm                                                          | ppm                                                    | ppm                                                         | ppm                                                            | %                                                                | ppm                                                             | ppm                                                             | %                                                                  | ppm                                                                 | ppm                                                      | %                                                              | ppm                                                              | ppm                                                                 | %                                                                  | ppm                                                           | ppm    |
| INAC004                                                                   | 36.00                                                      | 40.00                                                               | 0.0002                                                                      | 0.022                                                      | 0.59                                                                      | 0.21                                                   | -10                                                                 | 59.5                                                            | 0.3                                                                  | 0.0082                                                      | 0.06                                                          | 0.004                                                              | >500                                                                  | 1.895                                                         | 127.5                                                                | 0.983                                                                | 5.93                                                          | 1.06                                                        | 2.56                                                                | 0.258                                                        | 0.385                                                  | 0.008                                                       | 0.01                                                           | 0.2                                                              | 157.5                                                           | 1.4                                                             | 0.14                                                               | 58.1                                                                | 0.27                                                     | 0.013                                                          | 0.016                                                            | 5.77                                                                | 0.024                                                              | 25.8                                                          | -0.001 |
| INAC004                                                                   | 40.00                                                      | 44.00                                                               | -0.0002                                                                     | 0.022                                                      | 0.92                                                                      | -0.01                                                  | -10                                                                 | 105.5                                                           | 0.45                                                                 | 0.0093                                                      | 0.05                                                          | 0.002                                                              | 500                                                                   | 4.29                                                          | 68.9                                                                 | 0.799                                                                | 14.3                                                          | 1.53                                                        | 3.83                                                                | 0.31                                                         | 0.399                                                  | 0.01                                                        | 0.011                                                          | 0.52                                                             | 184                                                             | 2.6                                                             | 0.33                                                               | 132                                                                 | 0.37                                                     | 0.018                                                          | 0.031                                                            | 8.72                                                                | 0.024                                                              | 14.45                                                         | 0.004  |
| INAC005                                                                   | 24.00                                                      | 28.00                                                               | 0.0006                                                                      | 0.006                                                      | 0.81                                                                      | 0.21                                                   | -10                                                                 | 34.4                                                            | 0.08                                                                 | 0.0082                                                      | 0.02                                                          | 0.013                                                              | 6.46                                                                  | 1.215                                                         | 124.5                                                                | 0.076                                                                | 2.33                                                          | 0.81                                                        | 2.25                                                                | 0.033                                                        | 0.891                                                  | 0.007                                                       | 0.012                                                          | 0.01                                                             | 4.37                                                            | 1.3                                                             | 0.02                                                               | 34.8                                                                | 0.32                                                     | 0.011                                                          | 0.026                                                            | 7.1                                                                 | 0.001                                                              | 4.4                                                           | -0.001 |
| INAC005                                                                   | 28.00                                                      | 32.00                                                               | 0.0007                                                                      | 0.01                                                       | 0.47                                                                      | 0.12                                                   | -10                                                                 | 32.9                                                            | 0.08                                                                 | 0.0093                                                      | 0.03                                                          | 0.001                                                              | 93.4                                                                  | 1.49                                                          | 131.5                                                                | 0.077                                                                | 2.57                                                          | 0.76                                                        | 1.495                                                               | 0.093                                                        | 1.34                                                   | -0.004                                                      | 0.008                                                          | 0.02                                                             | 41.6                                                            | 1.2                                                             | 0.02                                                               | 28.7                                                                | 0.38                                                     | 0.009                                                          | 0.02                                                             | 5.92                                                                | 0.005                                                              | 7.75                                                          | -0.001 |
| INAC005                                                                   | 32.00                                                      | 36.00                                                               | -0.0002                                                                     | 0.011                                                      | 0.55                                                                      | 0.42                                                   | -10                                                                 | 56.1                                                            | 0.34                                                                 | 0.0148                                                      | 0.05                                                          | 0.004                                                              | >500                                                                  | 4.24                                                          | 179.5                                                                | 0.701                                                                | 9.29                                                          | 2.73                                                        | 3.63                                                                | 0.554                                                        | 0.318                                                  | -0.004                                                      | 0.022                                                          | 0.1                                                              | 220                                                             | 1.3                                                             | 0.09                                                               | 65.1                                                                | 0.87                                                     | 0.011                                                          | 0.033                                                            | 18.65                                                               | 0.042                                                              | 15.2                                                          | 0.002  |
| INAC008                                                                   | 12.00                                                      | 16.00                                                               | 0.0002                                                                      | 0.004                                                      | 0.95                                                                      | 0.2                                                    | -10                                                                 | 148                                                             | 0.48                                                                 | 0.0069                                                      | 0.04                                                          | 0.006                                                              | 369                                                                   | 8.51                                                          | 46.6                                                                 | 0.771                                                                | 10.75                                                         | 2.28                                                        | 3.71                                                                | 0.312                                                        | 0.303                                                  | 0.012                                                       | 0.029                                                          | 0.48                                                             | 130                                                             | 3                                                               | 0.33                                                               | 119.5                                                               | 0.43                                                     | 0.017                                                          | 0.024                                                            | 16.15                                                               | 0.022                                                              | 6.41                                                          | -0.001 |
| INAC024                                                                   | 0.00                                                       | 4.00                                                                | 0.0018                                                                      | 0.014                                                      | 0.7                                                                       | 0.54                                                   | 10                                                                  | 169.5                                                           | 1.94                                                                 | 0.0401                                                      | 0.41                                                          | 0.09                                                               | 160.5                                                                 | 99.2                                                          | 883                                                                  | 0.143                                                                | 59.8                                                          | 9.29                                                        | 2.68                                                                | 0.163                                                        | 0.135                                                  | 0.016                                                       | 0.023                                                          | 0.07                                                             | 22.6                                                            | 1.7                                                             | 0.55                                                               | 817                                                                 | 0.9                                                      | 0.098                                                          | 0.017                                                            | 434                                                                 | 0.003                                                              | 15.8                                                          | 0.032  |
| INAC025                                                                   | 16.00                                                      | 20.00                                                               | 0.0004                                                                      | 0.025                                                      | 1.4                                                                       | 0.55                                                   | -10                                                                 | 173                                                             | 0.63                                                                 | 0.0215                                                      | 0.28                                                          | 0.036                                                              | >500                                                                  | 387                                                           | 2080                                                                 | 0.13                                                                 | 20.9                                                          | 6.07                                                        | 6.22                                                                | 0.832                                                        | 0.926                                                  | 0.009                                                       | 0.034                                                          | 0.04                                                             | 790                                                             | 7.2                                                             | 1.17                                                               | 1155                                                                | 2.45                                                     | 0.099                                                          | 0.025                                                            | 2430                                                                | 0.022                                                              | 22.2                                                          | 0.015  |
| INAC027                                                                   | 20.00                                                      | 24.00                                                               | 0.0003                                                                      | 0.034                                                      | 0.97                                                                      | 1.19                                                   | 10                                                                  | 18                                                              | 2.07                                                                 | 0.0145                                                      | 0.12                                                          | 0.003                                                              | >500                                                                  | 28.4                                                          | 317                                                                  | 0.12                                                                 | 16.75                                                         | 5.38                                                        | 9.45                                                                | 1.595                                                        | 0.434                                                  | -0.004                                                      | 0.018                                                          | 0.02                                                             | 1160                                                            | 1.5                                                             | 0.26                                                               | 64.3                                                                | 1.84                                                     | 0.032                                                          | 0.064                                                            | 235                                                                 | 0.047                                                              | 24                                                            | 0.021  |
| INAC027                                                                   | 24.00                                                      | 28.00                                                               | 0.0003                                                                      | 0.033                                                      | 0.77                                                                      | 0.75                                                   | -10                                                                 | 35.5                                                            | 1.57                                                                 | 0.0136                                                      | 0.1                                                           | 0.005                                                              | 356                                                                   | 20.9                                                          | 138                                                                  | 0.135                                                                | 28.1                                                          | 3.56                                                        | 5.02                                                                | 0.414                                                        | 0.747                                                  | -0.004                                                      | 0.009                                                          | 0.03                                                             | 330                                                             | 1.9                                                             | 0.24                                                               | 65.8                                                                | 3.14                                                     | 0.024                                                          | 0.074                                                            | 144                                                                 | 0.025                                                              | 18.15                                                         | 0.012  |
| INAC027                                                                   | 32.00                                                      | 36.00                                                               | -0.0002                                                                     | 0.075                                                      | 0.85                                                                      | 0.36                                                   | -10                                                                 | 44.7                                                            | 1                                                                    | 0.0352                                                      | 0.14                                                          | 0.008                                                              | 404                                                                   | 19.05                                                         | 77.1                                                                 | 0.403                                                                | 32.4                                                          | 2.11                                                        | 2.84                                                                | 0.374                                                        | 0.442                                                  | -0.004                                                      | 0.013                                                          | 0.08                                                             | 320                                                             | 2.2                                                             | 0.3                                                                | 94.8                                                                | 2.67                                                     | 0.028                                                          | 0.02                                                             | 126.5                                                               | 0.024                                                              | 23.9                                                          | -0.001 |
| Hole ID                                                                   | From                                                       | То                                                                  | Pt                                                                          | Rb                                                         | Re                                                                        | S                                                      | Sb                                                                  | Sc                                                              | Se                                                                   | Sn                                                          | Sr                                                            | Та                                                                 | Те                                                                    | Th                                                            | Ti                                                                   | Tİ                                                                   | U                                                             | v                                                           | w                                                                   | Y                                                            | Zn                                                     | Zr                                                          | Dy                                                             | Er                                                               | Eu                                                              | Gd                                                              | Но                                                                 | Lu                                                                  | Nd                                                       | Pr                                                             | Sm                                                               | Tb                                                                  | Tm                                                                 | Yb                                                            |        |
|                                                                           | m                                                          | m                                                                   |                                                                             |                                                            |                                                                           | %                                                      | ppm                                                                 | ppm                                                             | ppm                                                                  |                                                             |                                                               |                                                                    |                                                                       |                                                               |                                                                      |                                                                      |                                                               |                                                             |                                                                     |                                                              |                                                        |                                                             |                                                                |                                                                  |                                                                 |                                                                 |                                                                    |                                                                     |                                                          |                                                                |                                                                  |                                                                     | ppm                                                                | ppm                                                           |        |
|                                                                           |                                                            |                                                                     | ppm                                                                         | ppm                                                        | ppm                                                                       | /0                                                     | ppiii                                                               | ppin                                                            | ppin                                                                 | ppm                                                         | ppm                                                           | ppm                                                                | ppm                                                                   | ppm                                                           | %                                                                    | ppm                                                                  | ppm                                                           | ppm                                                         | ppm                                                                 | ppm                                                          | ppm                                                    | ppm                                                         | ppm                                                            | ppm                                                              | ppm                                                             | ppm                                                             | ppm                                                                | ppm                                                                 | ppm                                                      | ppm                                                            | ppm                                                              | ppm                                                                 | PP                                                                 | pp                                                            |        |
| INAC004                                                                   | 36.00                                                      | 40.00                                                               | -0.002                                                                      | <b>ppm</b> 63                                              | -0.0002                                                                   | 0.01                                                   | 0.014                                                               | 11.6                                                            | 0.081                                                                | 0.5                                                         | 27.8                                                          | -0.005                                                             | <b>ppm</b><br>0.004                                                   | <b>ppm</b><br>76.4                                            | %<br>0.022                                                           | <b>ppm</b><br>0.415                                                  | <b>ppm</b><br>4.07                                            | <b>ppm</b><br>15.4                                          | <b>ppm</b> 0.352                                                    | <b>ррт</b><br>17.4                                           | <b>ppm</b><br>10.6                                     | <b>ррт</b><br>15                                            | <b>ppm</b><br>4.19                                             | ppm<br>1.615                                                     | 2.09                                                            | <b>ppm</b><br>7.34                                              | <b>ppm</b><br>0.661                                                | <b>ppm</b><br>0.12                                                  | <b>ppm</b><br>108.5                                      | <b>ppm</b><br>33.3                                             | ppm<br>14.15                                                     | 0.859                                                               | 0.18                                                               | 1.025                                                         |        |
| INAC004<br>INAC004                                                        | 36.00<br>40.00                                             |                                                                     |                                                                             | 63                                                         |                                                                           |                                                        |                                                                     |                                                                 |                                                                      |                                                             |                                                               |                                                                    |                                                                       |                                                               |                                                                      |                                                                      |                                                               |                                                             |                                                                     |                                                              |                                                        | ppm<br>15<br>15.4                                           |                                                                |                                                                  |                                                                 |                                                                 |                                                                    |                                                                     |                                                          |                                                                |                                                                  |                                                                     |                                                                    |                                                               |        |
|                                                                           |                                                            | 40.00                                                               | -0.002                                                                      | 63                                                         | -0.0002<br>-0.0002                                                        | 0.01                                                   | 0.014                                                               | 11.6                                                            | 0.081                                                                | 0.5                                                         | 27.8                                                          | -0.005                                                             | 0.004                                                                 | 76.4                                                          | 0.022                                                                | 0.415                                                                | 4.07                                                          | 15.4                                                        | 0.352                                                               | 17.4                                                         | 10.6                                                   | 15                                                          | 4.19                                                           | 1.615                                                            | 2.09                                                            | 7.34                                                            | 0.661                                                              | 0.12                                                                | 108.5                                                    | 33.3                                                           | 14.15                                                            | 0.859                                                               | 0.18                                                               | 1.025                                                         |        |
| INAC004                                                                   | 40.00                                                      | 40.00<br>44.00                                                      | -0.002                                                                      | 63<br>108.5<br>1.135                                       | -0.0002<br>-0.0002                                                        | 0.01                                                   | 0.014<br>0.013<br>0.032                                             | 11.6<br>6.94                                                    | 0.081                                                                | 0.5                                                         | 27.8<br>16.45                                                 | -0.005                                                             | 0.004                                                                 | 76.4                                                          | 0.022                                                                | 0.415                                                                | 4.07                                                          | 15.4<br>16.8                                                | 0.352                                                               | 17.4<br>25.8                                                 | 10.6<br>27.4                                           | 15<br>15.4                                                  | 4.19<br>5.44                                                   | 1.615<br>2.28                                                    | 2.09                                                            | 7.34<br>9.12                                                    | 0.661                                                              | 0.12                                                                | 108.5<br>119                                             | 33.3<br>35.7                                                   | 14.15<br>15.35                                                   | 0.859                                                               | 0.18<br>0.269<br>0.006                                             | 1.025                                                         |        |
| INAC004<br>INAC005                                                        | 40.00<br>24.00                                             | 40.00<br>44.00<br>28.00                                             | -0.002<br>-0.002<br>-0.002                                                  | 63<br>108.5<br>1.135<br>1.31                               | -0.0002<br>-0.0002<br>-0.0002                                             | 0.01 0.01 0.01                                         | 0.014<br>0.013<br>0.032                                             | 11.6<br>6.94<br>1.375                                           | 0.081 0.091 0.013                                                    | 0.5<br>0.71<br>0.37                                         | 27.8<br>16.45<br>3.49                                         | -0.005<br>-0.005<br>-0.005                                         | 0.004                                                                 | 76.4<br>67.6<br>11.35                                         | 0.022<br>0.057<br>0.004                                              | 0.415                                                                | 4.07<br>2.83<br>0.292                                         | 15.4<br>16.8<br>9.9                                         | 0.352<br>0.567<br>0.349                                             | 17.4<br>25.8<br>0.526                                        | 10.6<br>27.4                                           | 15<br>15.4<br>32.1                                          | 4.19<br>5.44<br>0.121                                          | 1.615<br>2.28<br>0.051                                           | 2.09<br>2.23<br>0.053                                           | 7.34<br>9.12<br>0.211                                           | 0.661<br>0.902<br>0.018                                            | 0.12<br>0.197<br>0.006                                              | 108.5<br>119<br>2.4                                      | 33.3<br>35.7<br>0.744                                          | 14.15<br>15.35<br>0.329                                          | 0.859                                                               | 0.18<br>0.269<br>0.006                                             | 1.025<br>1.5<br>0.048                                         |        |
| INAC004<br>INAC005<br>INAC005                                             | 40.00<br>24.00<br>28.00                                    | 40.00<br>44.00<br>28.00<br>32.00                                    | -0.002<br>-0.002<br>-0.002<br>-0.002                                        | 63<br>108.5<br>1.135<br>1.31                               | -0.0002<br>-0.0002<br>-0.0002<br>-0.0002                                  | 0.01<br>0.01<br>0.01<br>-0.01                          | 0.014<br>0.013<br>0.032<br>0.017                                    | 11.6<br>6.94<br>1.375<br>1.765                                  | 0.081<br>0.091<br>0.013<br>0.033                                     | 0.5<br>0.71<br>0.37<br>0.31                                 | 27.8<br>16.45<br>3.49<br>5.74                                 | -0.005<br>-0.005<br>-0.005<br>-0.005                               | 0.004<br>0.003<br>-0.003<br>0.004                                     | 76.4<br>67.6<br>11.35<br>23.8                                 | 0.022<br>0.057<br>0.004<br>0.003                                     | 0.415<br>0.674<br>0.014<br>0.014                                     | 4.07<br>2.83<br>0.292<br>1.12                                 | 15.4<br>16.8<br>9.9<br>10.8                                 | 0.352<br>0.567<br>0.349<br>0.449                                    | 17.4<br>25.8<br>0.526<br>2.92                                | 10.6<br>27.4<br>2.7<br>3                               | 15<br>15.4<br>32.1<br>47.1                                  | 4.19<br>5.44<br>0.121<br>0.751                                 | 1.615<br>2.28<br>0.051<br>0.305                                  | 2.09<br>2.23<br>0.053<br>0.505                                  | 7.34<br>9.12<br>0.211<br>1.475                                  | 0.661<br>0.902<br>0.018<br>0.12                                    | 0.12<br>0.197<br>0.006<br>0.026                                     | 108.5<br>119<br>2.4<br>29.9                              | 33.3<br>35.7<br>0.744<br>8.82                                  | 14.15<br>15.35<br>0.329<br>3.59                                  | 0.859<br>1.065<br>0.024<br>0.158                                    | 0.18<br>0.269<br>0.006<br>0.037                                    | 1.025<br>1.5<br>0.048<br>0.21                                 |        |
| INAC004<br>INAC005<br>INAC005<br>INAC005                                  | 40.00<br>24.00<br>28.00<br>32.00                           | 40.00<br>44.00<br>28.00<br>32.00<br>36.00                           | -0.002<br>-0.002<br>-0.002<br>-0.002<br>-0.002                              | 63<br>108.5<br>1.135<br>1.31                               | -0.0002<br>-0.0002<br>-0.0002<br>-0.0002<br>0.0002                        | 0.01<br>0.01<br>-0.01<br>-0.01                         | 0.014<br>0.013<br>0.032<br>0.017<br>0.03                            | 11.6<br>6.94<br>1.375<br>1.765<br>10.55                         | 0.081<br>0.091<br>0.013<br>0.033<br>0.135                            | 0.5<br>0.71<br>0.37<br>0.31<br>1.38                         | 27.8<br>16.45<br>3.49<br>5.74<br>12.3                         | -0.005<br>-0.005<br>-0.005<br>-0.005<br>-0.005                     | 0.004<br>0.003<br>-0.003<br>0.004<br>0.007                            | 76.4<br>67.6<br>11.35<br>23.8<br>63.4                         | 0.022<br>0.057<br>0.004<br>0.003<br>0.021                            | 0.415<br>0.674<br>0.014<br>0.014<br>0.114                            | 4.07<br>2.83<br>0.292<br>1.12<br>6.09                         | 15.4<br>16.8<br>9.9<br>10.8<br>52.4                         | 0.352<br>0.567<br>0.349<br>0.449<br>0.24                            | 17.4<br>25.8<br>0.526<br>2.92<br>24.1                        | 10.6<br>27.4<br>2.7<br>3<br>9.8                        | 15<br>15.4<br>32.1<br>47.1<br>13.25                         | 4.19<br>5.44<br>0.121<br>0.751<br>6.87                         | 1.615<br>2.28<br>0.051<br>0.305<br>2.43                          | 2.09<br>2.23<br>0.053<br>0.505<br>4.47                          | 7.34<br>9.12<br>0.211<br>1.475<br>13.7                          | 0.661<br>0.902<br>0.018<br>0.12<br>1.01                            | 0.12<br>0.197<br>0.006<br>0.026<br>0.179                            | 108.5<br>119<br>2.4<br>29.9<br>232                       | 33.3<br>35.7<br>0.744<br>8.82<br>60.9                          | 14.15<br>15.35<br>0.329<br>3.59<br>31.2                          | 0.859<br>1.065<br>0.024<br>0.158<br>1.475                           | 0.18<br>0.269<br>0.006<br>0.037<br>0.283                           | 1.025<br>1.5<br>0.048<br>0.21<br>1.58                         |        |
| INAC004<br>INAC005<br>INAC005<br>INAC005<br>INAC008                       | 40.00<br>24.00<br>28.00<br>32.00<br>12.00                  | 40.00<br>44.00<br>28.00<br>32.00<br>36.00<br>16.00                  | -0.002<br>-0.002<br>-0.002<br>-0.002<br>-0.002<br>-0.002                    | 63<br>108.5<br>1.135<br>1.31<br>26.1<br>73<br>3.78         | -0.0002<br>-0.0002<br>-0.0002<br>-0.0002<br>0.0002                        | 0.01<br>0.01<br>-0.01<br>-0.01<br>0.01                 | 0.014<br>0.013<br>0.032<br>0.017<br>0.03<br>0.013                   | 11.6<br>6.94<br>1.375<br>1.765<br>10.55<br>7.55                 | 0.081<br>0.091<br>0.013<br>0.033<br>0.135<br>0.095                   | 0.5<br>0.71<br>0.37<br>0.31<br>1.38<br>0.89                 | 27.8<br>16.45<br>3.49<br>5.74<br>12.3<br>11.8                 | -0.005<br>-0.005<br>-0.005<br>-0.005<br>-0.005<br>-0.005           | 0.004<br>0.003<br>-0.003<br>0.004<br>0.007<br>0.005                   | 76.4<br>67.6<br>11.35<br>23.8<br>63.4<br>30.8                 | 0.022<br>0.057<br>0.004<br>0.003<br>0.021<br>0.056                   | 0.415<br>0.674<br>0.014<br>0.014<br>0.114<br>0.323                   | 4.07<br>2.83<br>0.292<br>1.12<br>6.09<br>2.4                  | 15.4<br>16.8<br>9.9<br>10.8<br>52.4<br>35.1                 | 0.352<br>0.567<br>0.349<br>0.449<br>0.24<br>0.131                   | 17.4<br>25.8<br>0.526<br>2.92<br>24.1                        | 10.6<br>27.4<br>2.7<br>3<br>9.8<br>16.4                | 15<br>15.4<br>32.1<br>47.1<br>13.25<br>11.1                 | 4.19<br>5.44<br>0.121<br>0.751<br>6.87<br>3.83                 | 1.615<br>2.28<br>0.051<br>0.305<br>2.43<br>1.515                 | 2.09<br>2.23<br>0.053<br>0.505<br>4.47<br>2.19                  | 7.34<br>9.12<br>0.211<br>1.475<br>13.7<br>7.12                  | 0.661<br>0.902<br>0.018<br>0.12<br>1.01<br>0.588                   | 0.12<br>0.197<br>0.006<br>0.026<br>0.179<br>0.131                   | 108.5<br>119<br>2.4<br>29.9<br>232<br>113                | 33.3<br>35.7<br>0.744<br>8.82<br>60.9<br>33.3                  | 14.15<br>15.35<br>0.329<br>3.59<br>31.2<br>14.45                 | 0.859<br>1.065<br>0.024<br>0.158<br>1.475<br>0.787                  | 0.18<br>0.269<br>0.006<br>0.037<br>0.283<br>0.177                  | 1.025<br>1.5<br>0.048<br>0.21<br>1.58<br>1.04                 |        |
| INAC004<br>INAC005<br>INAC005<br>INAC005<br>INAC008<br>INAC024            | 40.00<br>24.00<br>28.00<br>32.00<br>12.00<br>0.00          | 40.00<br>44.00<br>28.00<br>32.00<br>36.00<br>16.00<br>4.00          | -0.002<br>-0.002<br>-0.002<br>-0.002<br>-0.002<br>-0.002<br>-0.002<br>0.065 | 63<br>108.5<br>1.135<br>1.31<br>26.1<br>73<br>3.78         | -0.0002<br>-0.0002<br>-0.0002<br>-0.0002<br>-0.0002<br>-0.0002            | 0.01<br>0.01<br>-0.01<br>-0.01<br>0.01<br>0.01         | 0.014<br>0.013<br>0.032<br>0.017<br>0.03<br>0.013<br>0.036          | 11.6<br>6.94<br>1.375<br>1.765<br>10.55<br>7.55<br>23.2         | 0.081<br>0.091<br>0.013<br>0.033<br>0.135<br>0.095<br>0.028          | 0.5<br>0.71<br>0.37<br>0.31<br>1.38<br>0.89<br>0.62         | 27.8<br>16.45<br>3.49<br>5.74<br>12.3<br>11.8<br>32.1         | -0.005<br>-0.005<br>-0.005<br>-0.005<br>-0.005<br>-0.005<br>-0.005 | 0.004<br>0.003<br>-0.003<br>0.004<br>0.007<br>0.005<br>0.014          | 76.4<br>67.6<br>11.35<br>23.8<br>63.4<br>30.8<br>1.77         | 0.022<br>0.057<br>0.004<br>0.003<br>0.021<br>0.056<br>0.013          | 0.415<br>0.674<br>0.014<br>0.014<br>0.114<br>0.323<br>0.187          | 4.07<br>2.83<br>0.292<br>1.12<br>6.09<br>2.4<br>0.928         | 15.4<br>16.8<br>9.9<br>10.8<br>52.4<br>35.1<br>86.2         | 0.352<br>0.567<br>0.349<br>0.449<br>0.24<br>0.131<br>0.076          | 17.4<br>25.8<br>0.526<br>2.92<br>24.1<br>14.35<br>14         | 10.6<br>27.4<br>2.7<br>3<br>9.8<br>16.4<br>85.7        | 15<br>15.4<br>32.1<br>47.1<br>13.25<br>11.1<br>4.42         | 4.19<br>5.44<br>0.121<br>0.751<br>6.87<br>3.83<br>3.45         | 1.615<br>2.28<br>0.051<br>0.305<br>2.43<br>1.515<br>1.96         | 2.09<br>2.23<br>0.053<br>0.505<br>4.47<br>2.19<br>0.773         | 7.34<br>9.12<br>0.211<br>1.475<br>13.7<br>7.12<br>3.45          | 0.661<br>0.902<br>0.018<br>0.12<br>1.01<br>0.588<br>0.633          | 0.12<br>0.197<br>0.006<br>0.026<br>0.179<br>0.131<br>0.277          | 108.5<br>119<br>2.4<br>29.9<br>232<br>113<br>21.7        | 33.3<br>35.7<br>0.744<br>8.82<br>60.9<br>33.3<br>6.07          | 14.15<br>15.35<br>0.329<br>3.59<br>31.2<br>14.45<br>4.51         | 0.859<br>1.065<br>0.024<br>0.158<br>1.475<br>0.787<br>0.561         | 0.18<br>0.269<br>0.006<br>0.037<br>0.283<br>0.177<br>0.281         | 1.025<br>1.5<br>0.048<br>0.21<br>1.58<br>1.04<br>1.95         |        |
| INAC004<br>INAC005<br>INAC005<br>INAC005<br>INAC008<br>INAC024<br>INAC025 | 40.00<br>24.00<br>28.00<br>32.00<br>12.00<br>0.00<br>16.00 | 40.00<br>44.00<br>28.00<br>32.00<br>36.00<br>16.00<br>4.00<br>20.00 | -0.002<br>-0.002<br>-0.002<br>-0.002<br>-0.002<br>-0.002<br>0.065<br>0.028  | 63<br>108.5<br>1.135<br>1.31<br>26.1<br>73<br>3.78<br>2.15 | -0.0002<br>-0.0002<br>-0.0002<br>-0.0002<br>-0.0002<br>-0.0002<br>-0.0002 | 0.01<br>0.01<br>-0.01<br>-0.01<br>0.01<br>0.01<br>0.01 | 0.014<br>0.013<br>0.032<br>0.017<br>0.03<br>0.013<br>0.036<br>0.015 | 11.6<br>6.94<br>1.375<br>1.765<br>10.55<br>7.55<br>23.2<br>10.3 | 0.081<br>0.091<br>0.013<br>0.033<br>0.135<br>0.095<br>0.028<br>0.192 | 0.5<br>0.71<br>0.37<br>0.31<br>1.38<br>0.89<br>0.62<br>0.95 | 27.8<br>16.45<br>3.49<br>5.74<br>12.3<br>11.8<br>32.1<br>38.2 | -0.005<br>-0.005<br>-0.005<br>-0.005<br>-0.005<br>-0.005<br>-0.005 | 0.004<br>0.003<br>-0.003<br>0.004<br>0.007<br>0.005<br>0.014<br>0.006 | 76.4<br>67.6<br>11.35<br>23.8<br>63.4<br>30.8<br>1.77<br>97.7 | 0.022<br>0.057<br>0.004<br>0.003<br>0.021<br>0.056<br>0.013<br>0.023 | 0.415<br>0.674<br>0.014<br>0.014<br>0.114<br>0.323<br>0.187<br>0.082 | 4.07<br>2.83<br>0.292<br>1.12<br>6.09<br>2.4<br>0.928<br>1.78 | 15.4<br>16.8<br>9.9<br>10.8<br>52.4<br>35.1<br>86.2<br>54.7 | 0.352<br>0.567<br>0.349<br>0.449<br>0.24<br>0.131<br>0.076<br>0.076 | 17.4<br>25.8<br>0.526<br>2.92<br>24.1<br>14.35<br>14<br>29.9 | 10.6<br>27.4<br>2.7<br>3<br>9.8<br>16.4<br>85.7<br>227 | 15<br>15.4<br>32.1<br>47.1<br>13.25<br>11.1<br>4.42<br>36.4 | 4.19<br>5.44<br>0.121<br>0.751<br>6.87<br>3.83<br>3.45<br>5.91 | 1.615<br>2.28<br>0.051<br>0.305<br>2.43<br>1.515<br>1.96<br>2.41 | 2.09<br>2.23<br>0.053<br>0.505<br>4.47<br>2.19<br>0.773<br>3.31 | 7.34<br>9.12<br>0.211<br>1.475<br>13.7<br>7.12<br>3.45<br>15.75 | 0.661<br>0.902<br>0.018<br>0.12<br>1.01<br>0.588<br>0.633<br>0.955 | 0.12<br>0.197<br>0.006<br>0.026<br>0.179<br>0.131<br>0.277<br>0.222 | 108.5<br>119<br>2.4<br>29.9<br>232<br>113<br>21.7<br>320 | 33.3<br>35.7<br>0.744<br>8.82<br>60.9<br>33.3<br>6.07<br>107.5 | 14.15<br>15.35<br>0.329<br>3.59<br>31.2<br>14.45<br>4.51<br>31.2 | 0.859<br>1.065<br>0.024<br>0.158<br>1.475<br>0.787<br>0.561<br>1.36 | 0.18<br>0.269<br>0.006<br>0.037<br>0.283<br>0.177<br>0.281<br>0.27 | 1.025<br>1.5<br>0.048<br>0.21<br>1.58<br>1.04<br>1.95<br>1.54 |        |

#### Table 5: Rare Earth Element (ppm) results of all re-analysed samples by Weak Acid Aqua Regia Digest/ICP-MS Analysis.

### JORC Code, 2012 Edition – Table 1

### **Section 1 Sampling Techniques and Data**

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Aircore (AC) drilling samples were collected as 1-m samples from the rig cyclone and placed on the ground in separate piles. These 1-m sample piles were then sampled using a plastic PVC tube ("spear") to collect a composite sample in the ratio of one sample for every four metres. One 1-m spear sample was collected as the last sample from INAC034. The 4-m composite samples and the one 1-m sample were then sent for analysis. The Competent Person considers the quality of the sampling to be fit for the purpose of early/reconnaissance exploration.</li> <li>Reverse Circulation (RC) drilling samples were collected as 1m samples split from the rig cyclone using a cone splitter. These samples were then stored securely on site. Approximately 1kg of sample was also collected from each metre interval and composite into one sample for every 4m. The 4m composite samples were then sent for analysis.</li> </ul> |
| Drilling<br>techniques | <ul> <li>Drill type (e.g., core, reverse circulation, open-hole hammer,<br/>rotary airblast, auger, Bangka, sonic, etc.) and details (e.g., core<br/>diameter, triple or standard tube, depth of diamond tails, face-<br/>sampling bit or other type, whether core is oriented and if so, by</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>INAC001-INAC0048 Aircore to blade refusal at EOH with a face sampling bit.</li> <li>DRC001-DRC007 Reverse circulation to end of hole</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Criteria                                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill sample<br>recovery                  | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                 | <ul> <li>Chip recoveries were monitored for consistent sample size for each metre.</li> <li>Appropriate measures were taken to maximise recovery and ensure representative nature of the samples, including efforts to keep the drill holes as dry as possible.</li> <li>No relationship between recovery and grade has been observed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Logging                                   | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                      | <ul> <li>All drill holes are logged in their entirety. Qualitative<br/>descriptions of mineralogy, mineralisation, weathering,<br/>lithology, colour and other features are recorded. A sample<br/>of every metre is permanently retained in chip trays for any<br/>follow-up logging. Logging is sufficient to support early<br/>exploration studies.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sub-sampling<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>Chips were sampled with a "spear" (PVC tube) from the 1m sample piles and composited to make roughly 4-kg, 4-m composite samples. The single 1-m spear sample was approximately 2 kg in size. Where a sample was wet, it was dried in the sun before composite samples were collected. Samples underwent sample preparation at ALS Perth following method PREP31: Dry, Crush, Split and Pulverize – samples were first weighed, then crushed to &gt;70% of the sample passing 2 mm, then split using riffle splitter. A sample split of up to 250 g was then pulverized to &gt;85 % of the sample passing -75 microns.</li> <li>Duplicates were submitted for analysis at a rate of approximately 1 per 20 samples, for quality control. The variability observed in duplicate sample results are considered appropriate by the Competent Person. The quality of the sub-sampling is considered fit for the purpose of early/reconnaissance exploration.</li> <li>The Competent Person considers drill sample sizes to be appropriate for the style of mineralisation and the nature of the drilling program.</li> </ul> |

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of assay<br>data and<br>laboratory tests | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make model, reading times, calibration factors applied and their derivation etc.</li> <li>Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.</li> </ul> | <ul> <li>Samples underwent sample preparation and geochemical analysis by ALS Perth. Rare Earth Elements were analysed by weak aqua regia digest with an ICP-MS finish (ALS Method code MS41W-REE,).</li> <li>Standards and blanks were submitted in the sample stream at a rate of approximately 1 per 20 samples. The laboratory conducted its own checks which were also monitored. No contamination was detected. The Competent Person considers the accuracy and precision of the geochemical data to be fit for purpose.</li> </ul>                       |
| Verification of<br>assaying                      | <ul> <li>The verification of significant intersections by either independent<br/>or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data<br/>verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                              | <ul> <li>The Desert Metals Exploration Manager has personally inspected all core and chips.</li> <li>No twin holes have been completed.</li> <li>Primary drill data were collected manually on paper and digitally using Excel software before being transferred to the master database in mining software package Micromine.</li> <li>Conversion of elemental analysis (REE parts per million, Table 2) to oxide (REO parts per million, Table 1) was using the below element to oxide conversion factors. Element - Conversion Factor - Oxide Form</li> </ul> |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ce 1.2284 CeO <sub>2</sub><br>Dy 1.1477 Dy <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Er 1.1435 Er <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Eu 1.1579 Eu <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gd 1.1526 Gd <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ho 1.1455 Ho <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | La 1.1728 La <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lu 1.1371 Lu <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nd 1.1664 Nd <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Criteria                   | JORC Code explanation                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                                                                                                                                                                                              | Pr 1.2083 Pr <sub>6</sub> O <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            |                                                                                                                                                                                                                                                                                                              | Sm 1.1596 Sm <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                            |                                                                                                                                                                                                                                                                                                              | Tb 1.1762 Tb <sub>4</sub> O <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                            |                                                                                                                                                                                                                                                                                                              | Tm 1.1421 Tm <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                            |                                                                                                                                                                                                                                                                                                              | Y 1.2699 Y <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                            |                                                                                                                                                                                                                                                                                                              | $\label{eq:product} \begin{array}{l} Yb\ 1.1387\ Yb_2O_3 \\ \bullet  \mbox{Rare earth oxide is the industry-accepted form for reporting rare earth analytical results. The following calculations are used for compiling REO into their reporting and evaluation groups:  \circ\ TREO\ (Total\ Rare\ Earth\ Oxide) = La_2O_3 + CeO_2 + Pr_6O_{11} \\ +\ Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + \\ Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Y_2O_3 + Lu_2O_3 \\ \circ\ TREO\ Ce = TREO\ - CeO_2 \\ \circ\ LREO\ (Light\ Rare\ Earth\ Oxide) = La_2O_3 + CeO_2 + Pr_6O_{11} \\ +\ Nd_2O_3 + Sm_2O_3 \\ \circ\ HREO\ (Heavy\ Rare\ Earth\ Oxide) = Eu_2O_3 + Gd_2O_3 + \\ Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + \\ Y_2O_3 + Lu_2O_3 \\ \circ\ CREO\ (Critical\ Rare\ Earth\ Oxide) = Nd_2O_3 + Eu_2O_3 + \\ Tb_4O_7 + Dy_2O_3 + Y_2O_3 \\ \circ\ MREO\ (Magnetic\ Rare\ Earth\ Oxide) = Pr_6O_{11} + Nd_2O_3 + \\ Sm_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3. \end{array}$ |
| Location of data<br>points | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar<br/>and down-hole surveys), trenches, mine workings and other<br/>locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control</li> </ul> | <ul> <li>Drill hole collar locations were surveyed using handheld GPS.</li> <li>Expected accuracy for collar surveys is ± 3 m.</li> <li>Down-hole surveys were taken by north-seeking gyro with readings at the surface and then approximately every 3 m downhole.</li> <li>The grid system is MGA GDA94 (zone 50), local easting and northing are MGA.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            |                                                                                                                                                                                                                                                                                                              | • Topographic surface uses handheld GPS elevation data, which is adequate for the current stage of the project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Criteria                                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data spacing<br>and distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample composting has been applied.</li> </ul>                                     | <ul> <li>Drilling to date has been reconnaissance in nature; the spacing is insufficient to make any conclusions as to the context, size, or extent of the mineralisation.</li> <li>Data spacing and distribution is not sufficient to allow the estimation of mineral resources.</li> <li>Drill samples were composted on site to create 4-m composite samples, with 1-m samples taken near end of hole.</li> </ul>   |
| Orientation of<br>data in relation<br>to geological<br>structure | <ul> <li>Whether the orientation of the sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>It is not known whether the orientation of the sampling achieved unbiased sampling of possible structures; however, it is considered unlikely by the Competent Person.</li> <li>It is not known if the relationship between the drilling orientation and the orientation of key mineralised structures has introduced a sampling bias; however, it is considered unlikely by the Competent Person.</li> </ul> |
| Sample security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                          | • Samples were sealed in polyweave bags that were cable-<br>tied closed and stored securely on site until transported by<br>company personnel to the lab.                                                                                                                                                                                                                                                              |
| Audits or<br>reviews                                             | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                                  | No audits or reviews have been conducted at this stage.                                                                                                                                                                                                                                                                                                                                                                |

### Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.</li> </ul> | <ul> <li>Surveys were conducted within DM1 100%-owned<br/>Exploration Licenses E9/2330 and E52/3665</li> <li>All tenements are in good standing with DMIRS. DM1 is<br/>unaware of any impediments for exploration on these<br/>licenses.</li> </ul>                                                                                                                                                                                                                                                                                                                         |
| Exploration<br>done by other<br>parties          | Acknowledgment and appraisal of exploration by other parties                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>The tenements have had very limited published or open file exploration work for magmatic nickel type deposits.</li> <li>Limited exploration undertaken to date by past explorers was mostly focused on iron ore, and, to a lesser extent, gold.</li> <li>The main exploration that is relevant to Desert Metals is described in the prospectus downloadable from the Company's website.</li> </ul>                                                                                                                                                                 |
| Geology                                          | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>The project covers regions of the Narryer Terrane in the Yilgarn<br/>Craton, said to represent reworked remnants of greenstone<br/>sequences that are prospective for intrusion-hosted Ni-Cu-(Co)-<br/>(PGEs) and orogenic gold mineralisation. Nickel-sulphide<br/>mineralisation is anticipated to be related to mantle-derived<br/>(mafic and ultramafic) intrusives intersected by deep structures.</li> <li>The REE mineralisation is considered to occur in deeply<br/>weathered lateritic and saprolitic clay layers of the Narryer<br/>terrane.</li> </ul> |

| Criteria                                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill hole<br>information                 | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collars</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | Refer to table in body of the report.                                                                                                                                                                                                                                                                                              |
| Data<br>aggregation<br>methods            | <ul> <li>In reporting Exploration Results, weighting average techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporated short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation shown in detail.</li> <li>The assumption used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                          | <ul> <li>Results from sample intervals (mostly 4-m composites) are reported in Tables.</li> <li>Assay results of REE are reported in ppm and the conversion of elemental analysis (REE parts per million) to stoichiometric oxide (REO parts per million) was undertaken using stoichiometric oxide conversion factors.</li> </ul> |
| Relationship<br>between<br>mineralisation | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • The relationship between drill hole orientations and mineralisation is unknown at this stage. All results are reported as downhole intervals/widths.                                                                                                                                                                             |
| widths and<br>intercept<br>lengths        | If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |
| Diagrams                                  | • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Refer to Figure in body of text.</li> <li>All drillhole assay results are summarised in tables in the report.</li> </ul>                                                                                                                                                                                                  |

| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Balanced<br>reporting                       | Where comprehensive reporting of all Exploration Results is<br>not practicable, representative reporting of both low and<br>high grades and/or widths should be practiced to avoid<br>misleading reporting of Exploration Results.                                                                                                                                                    | <ul> <li>All results are reported transparently in the report.</li> </ul>                                                                                                                                                                                                                                                  |
| Other<br>substantive<br>exploration<br>data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | <ul> <li>All new and relevant data have been reported.</li> </ul>                                                                                                                                                                                                                                                          |
| Further work                                | • The nature and scale of planned further work (e.g.,<br>tests for lateral extensions or depth extensions or<br>large-scale step-out drilling). Diagrams clearly<br>highlighting the areas of possible extensions,<br>including the main geological interpretations and<br>future drilling areas, provided this information is not<br>commercially sensitive.                         | <ul> <li>Adjacent samples have been re-submitted for REE analyses with results pending.</li> <li>A full review of the results to date will be undertaken prior to any future programs being executed.</li> <li>An extensive follow-up drill program is being planned to define the extent of the mineralisation</li> </ul> |