Rare Earth Elements at Dingo Pass

Limited

Highlights:

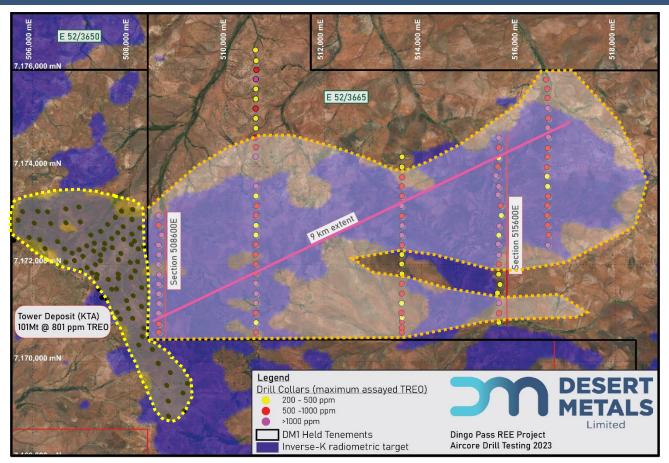
Analysis from recent aircore drilling on the Company's Dingo Pass license has demonstrated that clay hosted rare earth element (REE) mineralisation extends from the Tower resource (KTA:ASX 21 November 2022) for at least 9km into Desert Metals' license. Intersections of Total Rare Earth Oxide (TREO) include:

3m @ 4512 TREO from 21m, Hole DGAC 059

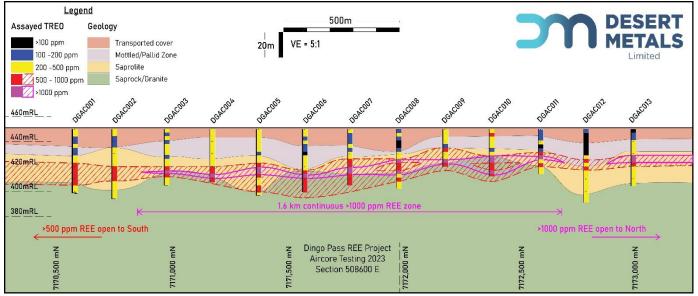
4m @ 3700 TREO from 21m, Hole DGAC 017

12m @ 1363 TREO from 24m, incl 3m @ 2078 TREO from 24m, Hole DGAC 081

17m @ 1101 TREO from 21m, incl 3m @ 1988 TREO from 21m, Hole DGAC 010


6m @ 1859 TREO from 18m, incl 3m @ 2508 TREO from 18m, Hole DGAC 082

9m @ 1885 TREO from 0m, incl 3m @ 2269 TREO from 6m, Hole DGAC 097


A total of 100 holes for 2973m were drilled along 5 north-south traverses. Lines were between 1 and 3 km apart with 200m spacing between holes. The program was designed to test whether REE mineralisation continued from the Tower REE Resource (ASX:KTA 21 November 2022, **101Mt @ 801ppm TREO**) onto DM1's 100% owned license E 52/3665. Of the 100 holes drilled, 74 holes returned assays greater than 500ppm TREO including 31 holes returning intercepts >1000ppm TREO (Figure 1, Table 1, Table 2). Assays of greater than 1000ppm TREO were intersected on all 5 lines.

The program has confirmed that clay hosted REE mineralisation extends for at least another 9km east from the boundary of the Tower REE deposit. The line immediately adjacent to the Tower deposit returned 1.6km length of continuous >1000ppm TREO mineralisation (Figure 1). The program has successfully confirmed that the Tower mineralisation footprint is at least five times larger within Desert Metals' license.

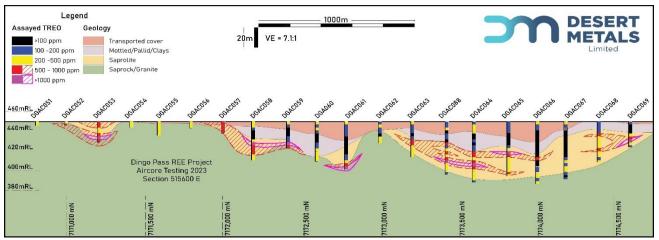


Figure 1. Dingo REE results. Of the 100 holes drilled, 74 holes retuned assays greater than 500ppm TREO including 31 holes returning intercepts >1000ppm TREO. Yellow shape approximate footprint of KTA's 101Mt Resource. Orange shape approximate footprint of new DM1 mineralisation open to the north and east

Figure 2. Section 508600E. Mineralisation of > 1000ppm TREO is continuous for over 1.6km and is open to the north.

Figure 3 Section 515600E. 7km to the east of the section in *Figure 2*. Mineralisation > 1000ppm TREO continues.

Hole id	From (m)	Thickness (m)	TREO ppm	HREO ppm	MREO ppm
DGAC001	27	18	772	328	197
DGAC002	30	12	621	164	197
DGAC003	30	9	809	207	216
DGAC004	30	13	897	186	210
DGAC005	27	24	711	222	168
DGAC006	33	18	794	198	232
DGAC007	24	21	777	284	212
DGAC008	24	18	805	189	234
DGAC009	15	15	761	87	193
DGAC010	21	17	1101	258	250
DGAC011	18	12	687	164	200
DGAC012	24	9	518	102	154
DGAC013	21	9	888	127	273
DGAC014	3	15	570	54	145
DGAC016	24	11	761	84	191
DGAC017	18	7	2368	360	608
DGAC018	30	12	1024	333	298
DGAC019	36	9	826	254	279
DGAC022	0	11	716	232	195
DGAC028	21	17	837	135	219
DGAC029	33	6	937	140	106
DGAC029	48	8	705	175	187
DGAC036	0	7	694	98	184
DGAC043	15	15	656	194	177
DGAC044	30	9	522	112	146

Llolo id	From (m)	Thickness (m)	TDEO nom		
Hole id	From (m)	Thickness (m)	TREO ppm	HREO ppm	MREO ppm
DGAC045	27	21	550	93	168
DGAC053	0	21	684	147	135
DGAC057	0	12	684	71	196
DGAC058	21	12	976	210	348
DGAC059	21	6	2604	222	424
DGAC061	42	6	1432	409	512
DGAC063	18	6	549	86	137
DGAC064	30	18	714	135	157
DGAC065	30	6	1123	374	698
DGAC069	15	6	854	67	159
DGAC070	18	8	776	61	86
DGAC075	42	6	524	168	138
DGAC081	21	12	1363	350	317
DGAC082	15	9	1473	224	449
DGAC084	12	7	815	132	147
DGAC087	6	9	514	56	69
DGAC088	21	21	587	122	196
DGAC089	3	6	884	209	212
DGAC090	0	6	597	124	177
DGAC097	0	9	1885	122	385

DESERT

METALS

Limited

LREO (Light Rare Earth Oxide) = La2O3 + Ce2O3 + Pr2O3 + Nd2O3 + Sm2O3

HREO (Heavy Rare Earth Oxide) = Eu2O3 + Gd2O3 + Tb2O3 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3

MREO (Magnetic Rare Earth Oxide) = Pr2O3 + Nd2O3 + Sm2O3 + Gd2O3 + Tb2O3 + Dy2O3.

The continuous REE mineralisation at Dingo over at least 9km of strike length now combines with REE mineralisation discovered at Innouendy over 20km of strike to highlight the truly vast scale of mineralisation within DM1's projects. With its location only 400km by well-maintained public roads to the soon to be built REE refinery at Eneabba (ASX.ILU, press release 3 April 2022), the Narryer Terrane is emerging as a potentially important source of clay hosted REEs, with DM1 holding most of the known mineralisation discovered to date.

The Company is evaluating how to move its REE projects forward in the context of currently difficult market conditions and comparatively weak REE prices. Subject to an improvement in market conditions, the Company does not intend to sole fund additional drilling for REEs on either Innouendy or Dingo projects in the short term.

Future Work Programs in 2023

The Company is actively exploring on a number of fronts:

 Gold – field work is ongoing at Little Gap Well/Mt Opal and drilling of several targets is expected in the coming months.

ETAL

Limited

- Lithium Exploration several pegmatites have been identified within the Innouendy and Dingo projects. Reconnaissance mapping is underway and soil geochemistry and radiometric surveys are planned.
- Nickel Exploration several priority EM conductors at Dingo have yet to be drilled. Detailed mapping and soil geochemistry is planned to cover these targets. Subject to results one or more of these may be drill tested.
- Graphite the Opal Bore project (west of Innouendy) contains a large EM conductor within a mapped graphitic phyllite slate which has not yet been drilled. The target is 20km from Buxton Resources' Yalbra graphite deposit. Subject to additional modelling of the EM data and a successful application for EIS funding, DM1 may drill this target.
- Rare Earth Elements The Company is evaluating how best to progress its two substantial clay hosted REE projects at Innouendy and Dingo.

With the exception of drilling nickel targets at Dingo all of the above work is relatively low cost and budgeted for within the Company's existing cash reserves. The Company is also actively reviewing several third-party project opportunities.

Authorised by the Board of Desert Metals Limited.

Rob Stuart	Tony Worth
Managing Director	Technical Director

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Dr Rob Stuart, a competent person who is a member of the Australasian Institute of Mining and Metallurgy. Dr Stuart has a minimum of five years' experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a competent person as defined in the 2012 Edition of the Joint Ore Reserves. Dr Stuart is a related party of the Company, being a Director, and holds securities in the Company. Dr Stuart has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Table 2: Rare Earth Oxide (ppm) Lithium Borate Fusion/ICP-MS significant assay results (TREO > 500ppm).

Hole_ID	From To		TREO	HREO	MREO	LREO (CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb407	Tm2O3	Y2O3	Yb2O3
DGAC001	27	30	818.55	264.34	246.64	554.21	245.07	28.35	16.47	7.10	27.89	5.70	123.14	2.39	124.22	33.83	27.95	4.40	2.44	153.66	15.94
DGAC001	30	33	726.72	282.00	209.38	444.72	197.77	28.81	17.44	5.75	26.74	5.69	97.23	2.42	100.08	26.34	23.31	4.10	2.68	172.07	16.28
DGAC001	33	36	649.54	226.63	189.58	422.90	184.26	22.38	14.64	4.46	22.53	4.58	97.34	2.04	95.41	25.13	20.76	3.36	2.24	136.51	13.89
DGAC001	36	39	632.52	247.67	151.16	384.85	197.77	22.49	17.78	3.59	17.92	5.23	79.28	2.92	72.90	20.00	14.90	2.94	2.80	153.02	18.96
DGAC001	39	42	992.14	390.26	209.88	601.89	347.64	34.66	28.47	8.00	26.51	8.11	110.13	4.29	97.04	25.86	21.22	4.59	4.43	243.19	28.01
DGAC001	42	45	812.59	557.96	174.19	254.63	71.49	40.40	34.88	6.15	29.28	10.01	83.39	4.67	67.18	15.35	17.22	4.76	4.65	393.67	29.49
DGAC002	30	33	602.12	156.54	202.38	445.57	183.65	16.01	8.24	3.72	20.63	3.09	99.10	1.07	112.67	27.31	22.84	2.92	1.05	92.96	6.86
DGAC002	33	36	593.03	158.23	188.79	434.80	203.91	14.75	8.52	2.98	18.33	3.05	77.76	1.11	106.84	25.01	21.28	2.59	1.24	98.04	7.63
DGAC002	36	39	713.32	173.46	208.47	539.86	287.45	17.73	10.11	3.50	20.80	3.64	85.61	1.47	115.71	27.55	23.54	3.14	1.50	102.10	9.47
DGAC002	39	42	574.88	167.61	187.88	407.27	179.96	15.84	8.97	3.16	19.77	3.40	77.76	1.35	104.16	24.41	20.99	2.72	1.32	102.48	8.60
DGAC003	30	33	530.16	92.96		437.20	199.00	9.62	5.63	2.34	10.93	1.90		0.77	63.22	18.43	11.71	1.69	0.79	53.59	5.70
DGAC003	33	36	1267.82	298.28		969.54	502.42	32.94	17.21	8.89	38.96	6.33	198.20	2.02	179.63	49.06	40.24	6.15	2.35	168.90	14.52
DGAC003	36	39	627.98	229.10		398.88	157.24	20.54	13.38	4.52	22.30	4.82	102.03	2.05	92.15	24.05	23.42	3.40	1.96	142.23	13.89
DGAC004	30	33	678.88	131.35		547.53	238.31	13.60	7.14	3.89	17.40	2.74	148.95	0.91	107.89	30.93	21.45	2.62	0.95	75.69	6.41
DGAC004	33	36	928.53	172.72		755.81	413.97	18.99	10.33	5.84	21.67	3.81	155.98	1.23	124.22	36.01	25.63	3.60	1.47	95.75	10.03
DGAC004	36	39	1219.19	252.00		967.19	729.67	30.41	19.90	6.40	23.17	6.52	102.97	2.74	87.36	24.17	23.02	4.86	2.97	133.34	21.69
DGAC004	39	43	796.66	186.00	222.07	610.66	246.91	16.99	10.04	5.92	22.71	3.73		1.10	121.31	34.07	23.66	3.34	1.30	112.51	8.36
DGAC005	27	30	569.25	213.84	167.64	355.41	155.39	20.95	13.61	4.35	20.17	4.51	76.94	2.01	82.58	20.84	19.66	3.45	1.94	129.53	13.32
DGAC005	30	33	1534.95	342.32		1192.63	1055.20	44.30	27.10	7.36	28.58	9.20		4.23	58.44	13.96	24.93	7.20	4.25	179.69	30.40
DGAC005	33	36	1202.40	334.40		868.01	524.53	38.79	21.61	8.86	38.84	7.69	131.94	2.87	140.55	35.04	35.95	6.81	3.04	184.77	21.12
DGAC005	36	39	635.63	261.11		374.52	119.15	25.48	15.55	5.38	25.36	5.40		2.29	101.48	25.86	23.66	4.18	2.22	160.01	15.26
DGAC005	45	48	555.22	228.58		326.64	147.41	22.32	14.92	3.81	20.63	4.91	68.37	2.14	75.23	17.94	17.68	3.31	2.15	140.32	14.06
DGAC005 DGAC006	48 33	51 36	552.39 628.57	179.96 97.09	161.94 176.52	372.43 531.48	170.13 266.56	18.71 11.53	10.61 5.65	3.93 3.81	20.34 16.31	3.76 2.08		1.32 0.72	80.60 98.79	20.18 27.55	19.08 20.12	3.03 2.21	1.45 0.79	107.69 48.64	9.12 5.35
DGAC006	36	39	1374.99	216.73		1158.26	604.37	27.66	13.32	7.11	34.00	4.69	247.46	1.91	209.95	54.62	41.86	4.81	1.87	108.83	12.53
DGAC000	39	42	776.24	220.05	260.09	556.19	204.53	27.00	13.32	6.97	27.78	4.09	146.60	2.01	140.55	35.40	29.11	4.01	1.87	108.85	12.55
DGAC006	42	42	780.94	185.12		595.83	253.05	23.18	10.15	5.74	27.89	3.76		1.23	140.55	33.40	29.11	3.91	1.30	124.70	8.52
DGAC000	42	48	671.33	258.77	193.14	412.56	189.79	26.51	16.29	5.15	25.59	5.69	85.97	2.15	91.45	22.17	23.19	4.23	2.31	156.83	14.01
DGAC000	48	51	529.52	208.05	142.45	321.47	148.02	17.62	15.72	4.23	16.60	4.62	67.91	2.89	70.68	17.46	17.39	2.69	2.46	124.32	16.91
DGAC007	24	27	507.59	150.60	101.91	356.99	232.17	15.21	10.28	2.42	12.10	3.28		1.59	48.99	11.97	11.43	2.20	1.51	91.81	10.20
DGAC007	27	30	686.30	243.38		442.92	176.28	26.63	14.87	4.33	24.09	5.35	116.46	1.93	102.29	25.98	21.92	4.07	2.06	147.31	12.75
DGAC007	30	33	1119.32	394.24	290.58	725.08	374.66	41.78	25.61	6.87	36.19	8.58	144.25	3.33	138.22	34.32	33.63	6.45	3.38	240.65	21.41
DGAC007	33	36	1256.55	450.14	353.07	806.42	355.01	47.74	29.39	8.43	42.53	10.07	195.86	3.65	173.21	43.38	38.96	7.25	4.04	271.76	25.28
DGAC007	36	39	718.36	327.12		391.24	151.09	31.10	19.67	5.40	30.08	6.77	102.15	2.75	91.33	22.90	23.77	4.86	2.71	206.36	17.42
DGAC007	39	42	584.00	190.38		393.62	179.96	20.20	11.03	4.64	22.71	4.03	89.37	1.38	83.05	20.66	20.58	3.72	1.51	112.26	8.90
DGAC007	42	45	568.23	232.36	159.83	335.87	150.48	23.07	14.58	4.71	20.98	5.13		1.76	75.47	18.18	18.55	3.58	2.01	144.13	12.41
DGAC008	24	27	1041.67	270.21	312.31	771.45	341.50	31.10	16.18	6.19	35.73	6.00	189.99	1.65	162.71	40.84	36.41	5.52	1.99	154.29	11.56
DGAC008	27	30	934.15	197.75	271.73	736.40	345.18	22.55	10.91	5.16	31.24	4.24	177.68	1.05	144.63	38.06	30.85	4.40	1.26	109.34	7.61
DGAC008	30	33	811.61	165.52	211.63	646.09	347.64	18.82	9.01	5.21	24.09	3.51	133.11	1.02	110.57	29.60	25.16	3.38	1.13	92.32	7.03
DGAC008	33	36	1031.19	280.24	318.71	750.96	282.53	29.73	15.61	6.16	34.23	5.88	218.73	1.54	170.88	45.19	33.63	5.06	1.99	168.90	11.16
DGAC008	39	42	552.78	88.88	162.76	463.90	229.10	9.76	4.39	3.32	13.25	1.68	96.76	0.50	96.46	26.34	15.25	1.69	0.53	50.29	3.46
DGAC009	15	18	531.14	40.48	105.26	490.66	200.84	5.74	2.41	1.99	7.35	0.97	198.79	0.24	60.65	21.21	9.17	1.14	0.25	18.79	1.58
DGAC009	24	27	1746.86	186.01	445.70	1560.85	852.51	23.53	9.80	6.02	35.04	4.10	326.04	1.07	261.27	73.95	47.08	4.83	1.19	93.34	7.09
DGAC009	27	30	871.29	101.41	261.41	769.88	329.21	11.88	4.67	3.94	20.40	1.95	214.04	0.42	155.13	44.95	26.55	2.49	0.57	52.19	2.90
DGAC010	3	6	598.11	88.59	113.08	509.52	356.24	9.54	5.41	1.79	11.87	1.92	63.33	0.71	60.42	16.37	13.16	1.72	0.74	50.42	4.48
DGAC010	21	24	1987.75	318.26	200.11	1669.49	1498.65	46.25	25.16	9.55	32.39	8.85	56.53	3.18	71.15	16.49	26.67	7.15	3.59	158.10	24.03
DGAC010	24	27	1157.22	232.65	272.33	924.57	546.64	28.81	14.75	8.17	29.62	5.33	168.88	1.79	144.05	36.01	28.99	4.86	1.95	124.45	12.92
DGAC010	27	30	759.06	175.44	259.58	583.62	234.62	20.43	9.42	6.45	25.93	3.65	139.56	0.94	142.88	37.09	29.45	3.79	1.15	97.40	6.26

Hole_ID	From To		TREO	HREO	MREO	LREO (CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb407	Tm2O3	Y2O3	Yb2O3
DGAC010	30	33	827.94	143.15	269.76	684.79	293.59	16.47	6.92	4.96	26.39	2.94	167.71	0.74	153.38	39.15	30.96	3.40	0.80	75.94	4.59
DGAC010	33	36	1101.12	491.85	309.21	609.27	253.05	47.97	31.22	6.24	41.03	10.63	143.08	2.99	142.88	36.97	33.28	7.07	3.92	318.74	22.03
DGAC010	36	38	605.20	186.25	189.73	418.95	163.38	18.65	10.90	4.47	21.44	3.79	109.19	1.23	99.03	25.62	21.74	3.26	1.37	113.15	7.99
DGAC011	18	21	518.83	98.02	180.61	420.81	157.85	13.31	6.05	5.33	17.58	2.29	115.64	0.80	102.76	25.25	19.31	2.40	0.91	43.68	5.67
DGAC011	21	24	1029.41	273.42	312.80	755.98	296.04	26.86	15.44	8.16	33.31	5.67	212.28		169.13	43.86	34.67	4.98	2.07	163.82	11.36
DGAC011	27	30	842.76	201.86	209.59	640.90	356.24	21.00	12.92	5.80	20.29	4.40				28.76	22.09	3.26	1.84	118.99	11.79
DGAC012	24	27	567.27	75.05	171.53	492.22	223.57	9.28	3.84	3.65	13.20	1.51	121.38			26.82	17.57	1.78		37.97	2.97
DGAC012	30	33	505.80	144.13	145.33	361.67	170.75	14.92	8.45	4.46	14.75	2.89	77.64			20.12	15.48	2.38	1.09	87.37	6.88
DGAC013	21	24	1078.34	109.10	343.09	969.25	479.08	14.29	5.23	7.98	23.40	2.18				55.70	38.03	2.88	0.65	46.99	4.91
DGAC013	24	27	1032.67	148.18	315.42	884.50	436.08	16.99	8.19	8.92	25.59	3.05	178.85			49.54	32.82	3.28	0.95	74.29	6.11
DGAC013	27	30	552.63	122.32	160.76	430.31	198.39	12.57	6.83	5.96	15.33	2.44	101.21			23.56	17.45	2.15	0.89	69.59	5.64
DGAC014	3	6	512.44	37.90	125.09	474.54	229.71	3.58	1.94	1.59	6.14	0.65	130.18			24.53	9.75	0.72	0.25	20.83	1.91
DGAC014	6	9 12	677.23 870.93	64.53 50.89	178.85	612.70 820.04	281.30	6.53 5.81	3.56	2.95	9.68 9.19	1.27	170.06			33.71	15.77 16.52	1.29	0.49	35.05	3.23 2.39
DGAC014 DGAC014	9				213.69		395.54		2.61	2.95		0.97	226.94			43.98		1.14	0.35	25.14	
DGAC014 DGAC016	15 24	18	590.19 521.28	82.38 29.64	153.14 118.58	507.81 491.65	241.99 241.38	8.71 4.24	4.76 1.75	4.32 1.90	10.82 6.37	1.54 0.64	133.70 143.08			26.46 23.08	14.09 10.51	1.49 0.79	0.61 0.16	45.34 12.57	4.12 1.07
DGAC016 DGAC016	24	27 30	826.85	66.72	217.13	760.13	373.43	8.10	3.16	3.46	13.08	1.33	145.08			39.51	10.51	1.59	0.10	32.89	2.39
DGAC010 DGAC016	30	33	959.84	126.98	238.97	832.86	425.03	12.80	6.94	3.40	16.66	2.25	200.55			41.32	22.50	2.23	0.98	74.04	6.37
DGAC010 DGAC016	33	35	721.87	111.53	190.49	610.34	297.27	12.80	6.06	3.58	14.12	2.23	150.12			31.90	18.73	1.99	0.85	65.27	5.37
DGAC010	18	21	592.50	75.46	189.03	517.04	255.51	9.85	4.68	3.95	13.77	1.78				31.05	21.39	2.15	0.65	33.02	4.91
DGAC017	21	23	3915.32	628.23	581.96	3287.09	2628.78	80.45	48.83	14.76	62.47	16.72				74.67	62.15	12.94	7.54	326.36	50.90
DGAC017	23	25	3484.66	376.95	1054.41	3107.70	1523.22	45.56	19.67	20.55	68.35	7.86				175.20	104.02	9.26	2.72	184.77	15.88
DGAC018	30	33	841.13	181.05	316.77	660.08	191.02	22.38	10.10	7.69	29.97	3.89				45.67	37.34	4.12	1.40	91.31	8.92
DGAC018	33	36	1459.73	458.77	389.12	1000.96	488.90	46.37	27.56	10.63	48.87	9.73	225.76			49.42	43.25	7.59	3.70	276.84	23.91
DGAC018	36	39	916.33	402.51	244.12	513.82	233.40	39.25	25.39	6.02	32.50	8.53	114.00			27.79	28.18	5.94	3.45	256.52	21.75
DGAC018	39	42	879.88	291.36	241.31	588.52	265.33	28.58	18.12	6.06	28.70	5.99	143.67	2.15	121.31	31.66	26.55	4.52	2.36	179.06	15.83
DGAC019	36	39	606.08	183.79	114.31	422.28	283.76	17.62	12.58	1.76	14.23	3.89	58.64	1.65	52.95	13.53	13.39	2.58	1.76	116.70	11.02
DGAC019	39	42	933.18	201.07	432.72	732.11	137.58	24.68	11.25	11.54	35.15	4.22	226.35	1.40	250.78	64.52	52.88	4.72	1.51	96.77	9.84
DGAC019	42	45	938.29	376.70	290.05	561.59	210.06	37.53	23.10	8.68	40.11	7.62			138.80	32.74	34.56	6.30	3.11	227.31	19.93
DGAC020	6	9	549.67	168.90	144.07	380.76	141.88	17.67	11.19	2.59	14.29	3.83	129.59	1.19	72.08	22.53	14.67	2.81	1.52	104.89	8.90
DGAC020	24	26	581.06	139.70	200.41	441.35	146.79	15.90	7.60	5.74	21.78	2.73	134.87	0.89	108.94	27.67	23.08	3.05	0.97	74.67	6.38
DGAC021	2	3	561.80	254.79	160.42	307.01	133.90	26.51	16.64	3.46	22.07	5.64	65.21	1.93	71.73	17.22	18.96	3.93	2.15	158.74	13.72
DGAC022	0	3	555.17	111.09	144.47	444.08	216.81	11.34	5.84	1.74	13.31	2.12	109.31	0.71	80.25	22.29	15.42	1.86	0.74	68.83	4.60
DGAC022	6	9	998.12	331.16	264.78	666.96	314.47	32.14	20.53	5.13	31.00	6.91	155.98	2.41	132.97	34.32	29.22	5.13	2.80	208.26	16.85
DGAC022	9	11	968.56	340.98	270.16	627.58	292.36	34.55	21.21	4.28	32.96	7.11	137.80	2.34	132.97	33.95	30.50	5.23	2.67	214.61	16.00
DGAC025	18	21	582.26	154.53	178.14	427.73	175.05	15.21	9.42	4.37	17.12	3.07	109.42	1.47	97.86	25.98	19.42	2.55	1.30	90.92	9.10
DGAC026	18	21	586.96	56.25	149.03	530.71	232.78	6.81	2.49	2.88	10.12	1.05				27.31	14.26	1.31	0.31	29.21	1.81
DGAC028	21	24	1169.86	95.48	161.79	1074.38	843.91	11.05	5.89	3.50	12.79	2.10				24.89	17.86	1.88	0.85	51.18	5.44
DGAC028	24	27	1015.71	178.21	385.84	837.50	310.79	22.72	10.54	8.83	29.85	3.85	197.62			59.45	43.95	4.16	1.40	86.10	9.46
DGAC028	27	30	562.00	94.60	167.16	467.41	171.98	10.27	5.25	3.39	13.77	1.87	154.22			26.95	17.57	1.91	0.72	52.07	4.66
DGAC028	30	33	620.39	109.17	160.91	511.23	230.33	11.30	6.17	3.32	13.89	2.14				25.86	15.71	2.00	0.78	63.75	5.07
DGAC028	33	36	874.27	205.78	227.81	668.49	316.93	18.88	11.61	4.72	21.84	3.83	167.71			35.04	23.42	3.23	1.44	130.16	8.76
DGAC028	36	38	754.13	128.36	211.40	625.77	294.82	13.03	6.38	3.71	18.61	2.39				32.99	22.44	2.45	0.74	76.07	4.32
DGAC029	33	36	999.74	83.87	79.84	915.87	796.00	8.84	4.80	1.26	8.60	1.72				11.23	8.59	1.53	0.64	51.81	4.05
DGAC029	36	39	873.79	197.09	132.30	676.70	533.13	21.52	11.49	2.44	15.33	4.36				16.01	14.84	3.25	1.58	126.61	9.13
DGAC029	48	51	505.71	152.75	146.89	352.97	164.61	15.84	7.71	2.22	17.00	3.04	77.17			19.21	18.38	2.86	0.94	97.02	5.37
DGAC029	51	54 56	1032.16	181.00	268.89	851.16	417.66	19.80	9.38	3.67	22.99	3.76				44.22	27.71	3.69	1.15	109.85	5.89
DGAC029	54	50	514.70	192.32	143.88	322.38	147.41	19.63	10.74	2.35	17.87	4.03	71.78	1.15	68.70	17.10	17.39	3.20	1.45	123.82	8.10

Hole_ID	From To		TREO	HREO	MREO	LREO (CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb407	Tm2O3	Y2O3	Yb2O3
DGAC030	45	48	623.27	106.43	202.27	516.84	157.85	12.28	5.25	6.17	17.87	2.19	189.41	0.55	116.06	32.02	21.51	2.54	0.69	54.99	3.92
DGAC031	36	39	622.74	64.94	162.67	557.80	267.79	7.79	3.61	3.08	10.70	1.25	147.19	0.34	98.68	29.24	14.90	1.36	0.46	33.27	3.07
DGAC031	39	41	855.22	115.98	230.76	739.24	356.24	14.00	6.27	4.33	18.90	2.36	187.65	0.59	135.30	38.42	21.63	2.51	0.74	61.34	4.94
DGAC032	39	42	634.29	274.05	201.86	360.24	114.98	26.97	16.29	6.55	26.28	5.51	100.74	1.97	99.61	23.68	21.22	4.09	2.03	170.80	13.55
DGAC034	0	2	549.72	90.43	144.24	459.29	220.50	9.19	5.36	2.64	11.27	1.81			83.40	25.13	13.80	1.45	0.66	53.08	4.33
DGAC034	2	4	637.25	91.00	165.38	546.25	265.33	8.93	5.03	3.35	11.76	1.95			98.21	29.48	15.42	1.58	0.67	53.21	3.81
DGAC036	0	3	610.16	76.79	154.66	533.37	275.16	7.41	4.45	2.91	10.30				91.56	29.36	14.73	1.29	0.58	43.56	4.09
DGAC036	3	5	564.91	62.73	135.43	502.18	272.70	7.37	3.62	2.84	9.56				79.55	24.53	13.16	1.27	0.53	32.51	3.28
DGAC036	5	7	950.12	152.97	261.38	797.15	384.49	15.72	9.62	5.70	19.54				153.38	44.83	25.05	2.86	1.20	87.12	7.13
DGAC037	15	18	509.54	95.10	137.70	414.44	181.19	10.73	5.75	3.75	13.20				75.70	22.72	13.45	1.91	0.78	51.81	4.48
DGAC037	21	23	554.06	145.59	174.27	408.47	138.20	13.94	8.74	4.32	15.16				96.23	29.00	17.80	2.14	1.23	88.00	8.01
DGAC041	6	9		157.10	92.03	405.93	304.64	15.72	10.09	1.74	13.72				40.59	10.07	9.46	2.47	1.42	97.40	9.74
DGAC041	15	18		86.65	164.80	421.84	186.10	9.77	4.16	2.00	16.08				95.06	24.53	17.28	2.08	0.63	45.46	4.16
DGAC041	21	23	526.29	140.84	143.62	385.45	183.03	14.58	8.40	3.61	16.25				75.23	19.82	15.31	2.43	1.15	81.91	8.37
DGAC042	24	26		176.39	215.58	635.46	361.15	17.50	11.37	5.16	19.77				118.97	31.42	24.82	3.11	1.54	101.85	10.90
DGAC042	26	28		200.44	265.75	809.05	452.05	21.46	12.01	6.52	24.20				147.55	39.03	29.69	3.82	1.85	112.51	12.24
DGAC043 DGAC043	15 18	18 21	727.90 1014.27	219.83 156.21	280.19 164.67	508.07 858.06	139.42 622.80	21.46 15.03	12.18 8.90	5.51 3.84	29.74 17.69				156.88 88.53	38.18 23.20	29.92 17.63	4.01 2.59	1.77 1.29	127.63 94.35	11.56 8.39
DGAC043 DGAC043	21	21	529.40	209.82	148.45	319.58	142.49	19.11	12.69	3.91	20.57	4.18			70.80	17.70	17.05	3.22	1.29	131.43	11.05
DGAC043 DGAC043	21	30	630.92	209.82	146.45	393.65	175.05	22.78	12.09	4.82	20.37				90.16	21.45	22.90	3.88	2.08	144.13	12.81
DGAC043 DGAC044	30	33	532.66	68.44	106.87	464.23	291.13	8.00	4.37	2.25	8.28				61.24	17.88	10.24	1.24	0.69	37.08	4.44
DGAC044	33	36		98.64	197.85	428.97	110.92	11.42	5.13	5.12	15.33				115.94	32.87	20.29	2.00	0.72	52.07	4.29
DGAC044	36	39	505.30	168.89	134.14	336.40	121.00	13.77	9.07	4.23	14.70				70.80	19.21	13.51	2.00	1.20	111.50	7.90
DGAC045	27	30		125.39	379.18	1217.89	565.06	17.67	7.55	7.16					226.86	67.18	39.77	3.48	1.18	53.34	7.06
DGAC045	36	39	905.23	283.61	362.63	621.62	91.88	30.87	16.64	9.21	37.00				197.12	51.84	40.35	5.45	2.31	159.37	14.75
DGAC045	45	48	986.08	103.61	264.57	882.47	389.40	13.49	5.89	5.65	17.17	2.31			158.63	48.09	24.82	2.38	0.86	49.27	5.86
DGAC046	24	27	768.50	123.31	177.67	645.19	362.38	14.46	7.12	4.46	16.31				98.91	27.19	18.32	2.48	0.89	67.69	6.30
DGAC047	15	18	664.53	100.74	273.42	563.79	135.74	13.03	5.45	7.56	19.13				163.30	45.31	30.03	2.62	0.70	45.08	4.29
DGAC048	6	9	563.01	92.46	154.63	470.55	241.38	10.20	5.28	3.23	13.25	1.97	99.92	0.84	88.06	23.44	17.74	1.93	0.77	50.42	4.57
DGAC052	2	4	762.76	268.57	221.50	494.19	219.27	26.17	15.95	5.01	27.09	5.52	110.95	1.91	110.57	27.31	26.09	4.27	2.10	167.63	12.92
DGAC053	0	3	503.21	146.69	140.32	356.52	164.61	14.23	8.87	1.75	15.56	2.80	83.74	1.11	73.95	19.15	15.07	2.35	1.19	91.81	7.01
DGAC053	3	6	549.38	193.48	147.51	355.90	167.68	18.19	12.18	1.16	17.12	4.02	78.93	1.55	74.88	19.39	15.02	2.91	1.67	124.32	10.37
DGAC053	12	15	719.69	143.90	99.29	575.78	458.19	13.66	8.71	1.59	11.87	3.09	45.86	1.17	48.17	12.02	11.54	2.02	1.22	92.32	8.24
DGAC053	15	18	1551.22	151.60	233.35	1399.62	1078.54	16.81	8.67	5.60	21.96	3.14	129.59	1.24	130.64	33.95	26.90	3.08	1.18	81.65	8.27
DGAC053	18	21	709.18	175.84	166.67	533.33	312.01	17.27	10.57	4.31	18.79	3.57	93.59	1.33	86.90	21.99	18.84	2.88	1.52	106.16	9.44
DGAC057	0	3	561.47	72.80	154.81	488.67	230.33	7.78	3.33	1.30	12.56	1.41	125.49	0.52	91.33	26.22	15.31	1.61	0.43	41.27	2.58
DGAC057	3	6	708.96	79.26	198.12	629.70	304.64	9.27	3.36	1.24	15.50	1.62	153.64	0.35	118.39	32.62	20.41	1.92	0.38	43.43	2.19
DGAC057	6	9	619.64	56.36	171.66	563.28	272.70	6.84	2.14	1.32	12.33	1.07	139.56	0.27	105.09	28.64	17.28	1.48	0.25	28.95	1.71
DGAC057	9	12	844.89	76.31	258.14	768.58	329.21	7.92	3.38	3.20	16.71	1.31	207.59	0.43	160.38	45.31	26.09	1.73	0.40	38.10	3.13
DGAC058	21	24	1442.25	186.17	734.46	1256.08	113.87	29.73	9.83	17.19	47.49				438.57	127.48	84.77	6.43	1.26	60.19	8.79
DGAC058	24	27	665.24	143.25	273.26	521.99	91.52	19.74	9.63	7.53	25.24				153.38	39.15	32.12	3.62	1.35	61.84	9.85
DGAC058	27	30	897.56	222.13	157.75	675.43	455.74	23.76	15.49	4.63	19.65				74.77	19.51	16.58	3.48	2.24	130.80	14.80
DGAC058	30	33	897.99	287.32	225.41	610.67	254.28	24.79	16.81	5.97	26.16				116.64	31.66	22.21	3.95	2.30	186.04	13.55
DGAC059	21	24	4511.98	296.29	657.82	4215.69	3095.57	35.69	17.44	14.94	45.41				394.24	113.22	62.62	6.63	2.31	149.85	15.14
DGAC059	24	27	695.21	146.98	191.02	548.23	219.88	15.15	8.13	4.68	17.35				107.43	29.97	18.55	2.58	1.14	86.61	7.22
DGAC061	42	45	830.23	109.63	208.52	720.61	439.77	14.12	6.27	5.50	18.44	2.45			117.22	30.21	25.63	2.91	0.90	52.83	5.52
DGAC061	45	48	2034.11	709.07	815.60	1325.04	205.76	80.11	39.68	21.71	88.87	14.78			432.73	107.42	92.42	14.06	5.09	408.91	31.43
DGAC063	18	21	525.12	66.62	130.96	458.50	261.65	7.69	3.81	3.05	10.72	1.34	85.85	0.48	75.70	21.39	13.92	1.55	0.53	34.16	3.30

Hole_ID	From To		TREO	HREO	MREO	LREO (CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb407	Tm2O3	Y2O3	Yb2O3
DGAC063	21	24	572.92	105.39	143.99	467.53	250.59	11.04	6.09	4.08	14.70	2.20	100.86	0.76	78.15	21.81	16.12	2.18	0.77	58.67	4.91
DGAC064	30	33	790.25	51.12	57.89	739.13	654.74	5.66	3.80	1.18	5.06	1.17	38.00	0.66	31.49	8.94	5.96	0.78	0.56	28.45	3.81
DGAC064	33	36	555.41	61.31	48.89	494.10	433.63	6.75	4.99	1.44	5.99	1.51	25.33	0.92	22.86	6.52	5.75	1.01	0.73	32.38	5.59
DGAC064	39	42	690.25	113.07	206.01	577.18	257.96	12.91	7.25	4.64	16.42	2.45	144.84	1.06	119.56	33.71	21.10	2.31	0.97	57.78	7.28
DGAC064	42	45	1317.43	361.78	420.05	955.65	312.01	34.89	22.64	9.11	40.46	7.50	304.93	2.32	231.53	64.16	43.02	5.99	2.72	219.69	16.45
DGAC064	45	48	586.51	162.33	163.10	424.18	187.95	15.26	9.11	3.08	15.68	3.23	106.49	1.06	89.23	24.05	16.47	2.42	1.22	103.88	7.39
DGAC065	30	33	1402.02	435.35	435.12	966.67	345.18	46.02	27.22	12.27	45.53	9.30	284.99	4.55	228.61	61.38	46.50	7.07	3.99	252.08	27.33
DGAC065	33	36	844.53	311.73	263.36	532.80	175.66	30.53	20.64	6.58	27.09	6.64	155.98	3.54	137.05	36.97	27.13	4.59	3.18	187.95	21.01
DGAC065	51	53	705.83	253.53	216.38	452.30	201.46	25.25	15.15	3.16	26.74	5.41	90.66	1.90	109.41	25.50	25.28	4.21	2.18	156.83	12.70
DGAC066	36	39	521.77	90.26	182.55	431.51	146.18	10.81	4.91	4.61	13.43	1.86	129.01	0.59	106.03	30.81	19.48	1.99	0.66	47.37	4.04
DGAC068	12	15	521.88	89.57	125.04	432.31	230.33	9.78	5.58	2.72	10.25	1.81	98.52	0.72	70.92	19.33	13.22	1.54	0.77	51.56	4.85
DGAC068	27	30	520.73	116.30	150.06	404.43	173.20	11.76	5.79	3.05	15.21	2.07	110.13	0.76	83.40	21.99	15.71	1.98	0.87	70.10	4.71
DGAC069	15	18	524.76	38.13	99.12	486.62	336.58	4.58	2.37	2.47	6.43	0.79	62.74	0.27	60.54	15.77	10.99	0.81	0.29	18.03	2.10
DGAC069	18	21	1182.44	95.41	219.78	1087.03	749.32	12.05	5.72	6.17	16.31	1.91	148.36	0.69	132.97	35.04	21.34	2.07	0.72	45.08	4.68
DGAC070	18	21	713.68	24.99	58.56	688.69	581.03	2.96	1.54	1.00	4.17	0.57	56.76	0.20	35.58	9.97	5.35	0.54	0.21	12.19	1.61
DGAC070	24	26	1361.25	109.68	94.56	1251.57	1109.25	10.56	7.17	2.58	9.69	2.23	69.55	0.96	50.51	13.23	9.04	1.53	0.94	66.42	7.61
DGAC071	36	39	801.06	222.17	299.79	578.90	122.47	21.86	12.12	8.61	29.51	4.22	211.69	1.30	172.04	42.77	29.92	3.68	1.48	128.89	10.49
DGAC072	18	20	947.27	91.13	150.19	856.13	626.48	11.43	6.66	4.12	10.68	2.07	103.32	0.85	87.60	22.96	15.77	1.75	0.90	46.35	6.31
DGAC073	42	45	792.05	111.85	247.53	680.20	303.41	14.00	6.58	6.59	18.96	2.50	164.78	0.74	145.80	37.22	28.99	2.56	0.87	53.72	5.34
DGAC074	54	57	532.54	80.48	94.64	452.06	323.07	9.00	5.44	2.35	10.88	1.44	55.71	0.84	51.21	12.93	9.15	1.48	0.85	43.05	5.15
DGAC075	36	39	578.24	74.26	110.55	503.98	367.29	8.75	4.71	3.28	10.97	1.71	47.50	0.63	59.95	14.74	14.50	1.65	0.67	37.59	4.32
DGAC075	42	45	528.46	223.81	130.74	304.66	129.60	17.16	12.69	4.31	16.42	4.10	80.45	1.88	63.92	16.19	14.50	2.55	1.74	151.12	11.84
DGAC075	45	48	519.30	111.26	145.19	408.03	189.79	9.95	6.15	4.02	14.06	2.07	98.87	0.89	81.65	21.21	16.52	1.80	0.87	65.91	5.55
DGAC078	30	33	549.02	90.54	136.83	458.47	212.51	9.97	4.85	4.64	11.81	1.72	132.53	0.65	77.22	22.47	13.74	1.61	0.65	50.16	4.48
DGAC079	21	24	654.97	105.93	204.65	549.04	210.67	12.05	5.77	4.96	16.66	2.18	164.78	0.98	117.81	33.35	22.44	2.35	0.91	53.84	6.23
DGAC080	21	24	605.77	244.82	181.57	360.95	162.15	26.74	14.81	4.69	25.01	5.46	73.30	2.14	82.35	20.48	22.67	4.32	2.11	146.67	12.87
DGAC080	42	44	522.66	176.20	151.93	346.46	157.85	18.88	11.44	3.81	19.88	3.86	78.69	1.35	73.37	19.33	17.22	3.25	1.54	103.12	9.08
DGAC081	21	24	641.05	92.45	227.22	548.60	237.70	12.68	5.18	4.72	16.71	1.86	115.40	0.53	135.30	34.80	25.40	2.33	0.64	44.32	3.47
DGAC081	24	27	2078.02	355.92	394.12	1722.09	1246.83	40.97	21.44	9.96	45.30	7.96	174.16	2.35	206.45	49.66	44.99	6.74	2.72	201.91	16.57
DGAC081	27	30	1411.91	312.22	297.63	1099.69	702.64	34.78	20.30	7.61	33.89		173.57	2.63	153.38	41.57	28.53	5.49	2.65	179.69	18.16
DGAC081	30	33	1321.03	639.42	350.72	681.61	299.73	58.30	40.59	7.13	48.52			6.67	156.30		41.17	8.61	6.03	410.18	40.31
DGAC081	45	47	625.30	78.67	165.05	546.63	265.33	8.11	3.70	2.77	12.51				99.49		15.13	1.53	0.46	43.94	3.71
DGAC082	15	18	702.03	70.56	231.96	631.47	253.05	8.48		4.39	14.41			0.35	142.30		22.96	1.88	0.46	32.89	2.77
DGAC082	18	21	2507.90	364.71	867.43	2143.19	784.95	45.10	19.21	17.02	64.32				519.05		84.30	8.46	2.27	184.77	14.06
DGAC082	21	24	1210.23	237.51	247.65	972.71	628.94	25.13	13.66	5.77	26.51				131.80		24.93	4.10	1.85	140.96	12.70
DGAC083	21	24	561.24	78.84	115.61	482.40	281.30	8.42	4.59	3.05	10.10			0.53	64.74		11.47	1.44	0.56	44.32	4.24
DGAC084	12	15	810.96	145.19	118.90	665.77	507.33	15.09	9.05	3.33	15.04			1.14	58.67		12.18	2.33	1.21	87.37	7.71
DGAC084	15	17	613.70	98.18	136.32	515.51	304.64	10.15	5.28	3.77	13.14				75.35		14.26	1.86	0.70	55.75	4.82
DGAC084	17	19	1023.83	152.16	186.62	871.67	589.63	16.47	9.11	4.63	17.92						18.90	2.72	1.27	86.86	8.67
DGAC085	15	18	791.12	117.84	195.50	673.28	321.84	12.62	6.31	4.02	16.19				113.26		18.50	2.31	0.93	66.54	5.70
DGAC086	15	18	519.29	131.56	132.76	387.73	210.06	14.46		3.28	14.47			1.25	68.12		14.96	2.39	1.32	73.78	8.84
DGAC087	6	9	530.10	57.73	51.88	472.38	402.92	6.09	3.58	1.38	5.46				26.59		5.32	1.12	0.55	34.41	3.25
DGAC087	9	12	510.66	54.83	86.48	455.83	319.38	6.35	2.98	2.17	7.18			0.44	48.76		9.66	1.25	0.42	29.84	2.98
DGAC087	12	15	502.61	94.31	185.61	408.31	126.53	11.53	4.93	4.74	15.62						21.39	2.16	0.71	48.13	4.00
DGAC088	21	24	525.24	88.57	182.66	436.67	158.46	11.25	5.00	3.98	15.33				106.03		21.16	2.19	0.75	41.78	5.75
DGAC088	30	33	616.48	105.09	172.05	511.38	278.85	13.66		4.90	16.02				95.29		21.57	2.36	1.01	49.40	7.54
DGAC088	36	39	740.51	151.26	309.58	589.25	182.42	19.22	10.13	8.72	25.47	3.52		1.84	180.21		37.34	3.47	1.74	63.37	13.78
DGAC088	39	42	1310.51	334.48	528.88	976.03	296.04	41.66	21.84	16.15	51.75	7.66	252.15	3.70	297.43	67.66	62.73	7.63	3.55	153.66	26.87

Hole_ID	From	То	TREO		HREO	MREO	LREO	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb407	Tm2O3	Y2O3	Yb2O3
DGAC089	3		6 59	93.85	85.15	122.65	508.70	318.16	9.86	5.15	3.64	12.33	1.87	91.95	0.69	66.83	18.49	13.28	1.86	0.70	44.32	4.74
DGAC089	6		9 11	74.65	332.43	300.67	842.22	418.88	32.25	17.84	9.75	35.04	6.33	195.27	2.42	157.46	36.85	33.74	5.32	2.47	203.82	17.19
DGAC090	C)	3 54	41.43	135.76	160.06	405.67	175.66	12.74	7.01	4.65	14.93	2.34	99.92	0.85	91.33	22.23	16.52	2.31	1.06	83.18	6.70
DGAC090	з		6 6	51.87	111.55	193.83	540.31	254.28	12.17	5.84	5.47	16.60	2.18	123.14	0.61	115.12	28.52	19.25	2.18	0.66	61.08	4.77
DGAC091	0)	3 55	57.64	80.26	145.51	477.38	226.03	8.37	4.30	2.81	10.50	1.49	126.08	0.60	87.83	22.78	14.67	1.36	0.63	46.22	3.97
DGAC094	9) (12 50	52.85	88.31	140.35	474.54	229.71	8.83	4.48	2.41	11.23	1.71	126.08	0.64	82.00	23.02	13.74	1.54	0.66	52.45	4.37
DGAC097	C)	3 124	42.33	64.09	261.58	1178.24	616.66	6.54	3.14	1.95	9.94	1.16	317.83	0.38	171.46	54.49	17.80	1.35	0.46	36.32	2.86
DGAC097	з		6 214	44.72	149.12	433.14	1995.60	1157.15	16.53	8.04	4.55	19.77	3.01	444.49	1.13	274.10	85.06	34.79	2.89	1.15	85.08	6.97
DGAC097	6	i	9 220	58.88	151.54	459.88	2117.33	1185.41	16.35	7.86	5.20	23.40	2.93	514.86	1.10	291.60	89.17	36.30	3.06	1.04	83.94	6.66
DGAC098	C)	3 54	48.87	95.48	151.60	453.39	200.23	9.79	4.97	2.54	11.41	1.78	124.32	0.71	89.81	24.77	14.26	1.55	0.70	57.78	4.26
DGAC098	15		18 63	35.14	43.09	140.89	592.05	294.82	3.57	2.01	1.55	7.02	0.73	167.71	0.27	90.05	28.88	10.60	0.78	0.25	25.02	1.89

LREO (Light Rare Earth Oxide) = La2O3 + Ce2O3 + Pr2O3 + Nd2O3 + Sm2O3

HREO (Heavy Rare Earth Oxide) = Eu2O3 + Gd2O3 + Tb2O3 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3

MREO (Magnetic Rare Earth Oxide) = Pr2O3 + Nd2O3 + Sm2O3 + Gd2O3 + Tb2O3 + Dy2O3.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Aircore (AC) drilling samples were collected as 1-m samples from the rig cyclone and placed on the ground in separate piles. These 1-m sample piles were then sampled using a plastic PVC tube ("spear") to collect a composite sample in the ratio of one sample for every 3 metres. The 3-m composite were then sent for analysis. The Competent Person considers the quality of the sampling to be fit for the purpose of early/reconnaissance exploration.
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary airblast, auger, Bangka, sonic, etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 All AC aircore holes were drilled to blade refusal at EOH with a face sampling bit.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Chip recoveries were monitored for consistent sample size for each metre. Appropriate measures were taken to maximise recovery and ensure representative nature of the samples, including efforts to keep the drill holes as dry as possible. No relationship between recovery and grade has been observed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	All drill holes are logged in their entirety. Qualitative descriptions of mineralogy, mineralisation, weathering, lithology, colour and other features are recorded. A sample of every metre is permanently retained in chip trays for any follow-up logging. Logging is sufficient to support early exploration studies.
Sub-sampling and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Chips were sampled with a "spear" (PVC tube) from the 1m sample piles and composited to make roughly 3-kg, 3-m composite samples. Where a sample was wet, it was dried in the sun before composite samples were collected. Samples underwent sample preparation at ALS Perth following method PREP31: Dry, Crush, Split and Pulverize – samples were first weighed, then crushed to >70% of the sample passing 2 mm, then split using riffle splitter. A sample split of up to 250 g was then pulverized to >85 % of the sample passing -75 microns. Duplicates were submitted for analysis at a rate of approximately 1 per 20 samples, for quality control. The variability observed in duplicate sample results are considered appropriate by the Competent Person. The quality of the sub-sampling is considered fit for the purpose of early/reconnaissance exploration. The Competent Person considers drill sample sizes to be appropriate for the style of mineralisation and the nature of the drilling program.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make model, reading times, calibration factors applied and their derivation etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 Samples are to be submitted for sample preparation and geochemical analysis by ALS Perth. Standards and blanks were submitted in the sample stream at a rate of approximately 1 per 30 samples. The laboratory conducted its own checks which were also monitored. In the field spot checks were completed on selected samples using a handheld XRF unit. These results are not considered reliable without calibration using chemical analysis. They were used as a guide to the relative presence or absence of certain elements, including REEs, to help guide the drill program.
Verification of assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The Desert Metals Exploration Manager has personally inspected all core and chips. No twin holes have been completed. Primary drill data were collected manually on paper and digitally using Excel software before being transferred to the master database in mining software package Micromine. Conversion of elemental analysis (REE parts per million) to oxide (REO parts per million) was using the below element to oxide conversion factors. Element - Conversion Factor - Oxide Form Ce 1.2284 CeO2 Dy 1.1477 Dy2O3 Er 1.1435 Er2O3 Eu 1.1579 Eu2O3 Gd 1.1526 Gd2O3 Ho 1.1455 Ho2O3 La 1.1728 La2O3 Lu 1.1371 Lu2O3 Nd 1.1664 Nd2O3 Pr 1.2083 Pr₆O₁₁

Criteria	JORC Code explanation	Commentary
		Tb 1.1762 Tb ₄ O ₇ Tm 1.1421 Tm ₂ O ₃ Y 1.2699 Y ₂ O ₃ Yb 1.1387 Yb ₂ O ₃ Rare earth oxide is the industry-accepted form for reporting rare earth analytical results. The following calculations are used for compiling REO into their reporting and evaluation groups: \circ TREO (Total Rare Earth Oxide) = La ₂ O ₃ + CeO ₂ + Pr ₆ O ₁₁ + Nd ₂ O ₃ + Sm ₂ O ₃ + Eu ₂ O ₃ + Gd ₂ O ₃ + Tb ₄ O ₇ + Dy ₂ O ₃ + Ho ₂ O ₃ + Er ₂ O ₃ + Tm ₂ O ₃ + Yb ₂ O ₃ + Ya ₂ O ₃ + Lu ₂ O ₃ \circ TREO -Ce = TREO - CeO ₂ \circ LREO (Light Rare Earth Oxide) = La ₂ O ₃ + CeO ₂ + Pr ₆ O ₁₁ + Nd ₂ O ₃ + Sm ₂ O ₃ \circ HREO (Heavy Rare Earth Oxide) = Eu ₂ O ₃ + Gd ₂ O ₃ + Tb ₄ O ₇ + Dy ₂ O ₃ + Ho ₂ O ₃ + Er ₂ O ₃ + Tm ₂ O ₃ + Tm ₂ O ₃ + Ho ₂ O ₃ + Er ₂ O ₃ + Tm ₂ O ₃ + Ho ₂ O ₃ + Er ₂ O ₃ + Tm ₂ O ₃ + Tm ₂ O ₃ + Ho ₂ O ₃ + Ho ₂ O ₃ + Er ₂ O ₃ + Tm ₂ O ₃ + Ho ₂ O ₃ + Ho ₂ O ₃ + Er ₂ O ₃ + Tm ₂ O ₃ + Ho ₂ O ₃ + Ho ₂ O ₃ + Er ₂ O ₃ + Tm ₂ O ₃ + Yb ₂ O ₃ + Ho ₂ O ₃ + Ho ₂ O ₃ + Ho ₂ O ₃ + Er ₂ O ₃ + Tm ₂ O ₃ + Fr ₂ O ₃ + Tm ₂ O ₃ + CREO (Critical Rare Earth Oxide) = Nd ₂ O ₃ + Eu ₂ O ₃ + Tb ₄ O ₇ + Dy ₂ O ₃ + Tb ₄ O ₇ + Dy ₂ O ₃ + CeO ₂ + La ₂ O ₃ + Sm ₂ O ₃ + Gd ₂ O ₃ + Tb ₄ O ₇ + Dy ₂ O ₃ + Tb ₄ O ₇ + Dy ₂ O ₃ + Tb ₄ O ₇ + Dy ₂ O ₃ + CeO ₂ + CeO ₂ + La ₂ O ₃ + Y ₂ O ₃ + Sm ₂ O ₃ + Gd ₂ O ₃ + Tb ₄ O ₇ + Dy ₂ O ₃ + Tb ₄ O ₇ + Dy ₂ O ₃ .
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control 	 Drill hole collar locations were surveyed using handheld GPS. Expected accuracy for collar surveys is ± 3 m. Down-hole surveys were taken by north-seeking gyro with readings at the surface and then approximately every 3 m downhole. The grid system is MGA GDA94 (zone 50), local easting and northing are MGA. Topographic surface uses handheld GPS elevation data, which is adequate for the current stage of the project.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample composting has been applied. 	 Data spacing and distribution is not sufficient to allow the estimation of mineral resources. Drill samples were composted on site to create 3-m composite samples, with 1-m samples taken near end of hole.
Orientation of data in relation to geological structure	 Whether the orientation of the sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 It is not known whether the orientation of the sampling achieved unbiased sampling of possible structures; however, it is considered unlikely by the Competent Person. It is not known if the relationship between the drilling orientation and the orientation of key mineralised structures has introduced a sampling bias; however, it is considered unlikely by the Competent Person.
Sample security	The measures taken to ensure sample security.	• Samples were sealed in polyweave bags that were cable- tied closed and stored securely on site until transported by company personnel to the lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been conducted at this stage.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Surveys were conducted within DM1 100%-owned Exploration License E 52/3665 All tenements are in good standing with DMIRS. DM1 is unaware of any impediments for exploration on these licenses.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties 	 The tenements have had very no published or open file exploration work for clay hosted REE type deposits. Limited exploration undertaken to date by past explorers was mostly focused on iron ore, and, to a lesser extent, gold. The main previous exploration that is relevant to Desert Metals is described in the prospectus downloadable from the Company's website.
Geology	• Deposit type, geological setting and style of mineralisation.	 The project covers regions of the Narryer Terrane in the Yilgarn Craton, said to represent reworked remnants of greenstone sequences that are prospective for intrusion-hosted Ni-Cu-(Co)- (PGEs) and orogenic gold mineralisation. Nickel-sulphide mineralisation is anticipated to be related to mantle-derived (mafic and ultramafic) intrusives intersected by deep structures. The REE mineralisation is considered to occur in deeply weathered lateritic and saprolitic clay layers of the Narryer terrane.

Criteria	JORC Code explanation	Commentary
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collars elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to tables in body of the report.
Data aggregation methods	 In reporting Exploration Results, weighting average techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporated short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation shown in detail. The assumption used for any reporting of metal equivalent values should be clearly stated. 	 Assay results of REE are reported in ppm and the conversion of elemental analysis (REE parts per million) to stoichiometric oxide (REO parts per million) was undertaken using stoichiometric oxide conversion factors.
Relationship between mineralization widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	The relationship between drill hole orientations and mineralisation is unknown at this stage. All results are reported as downhole intervals/widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to Figures in body of text.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid 	All results are reported transparently in the report.

Criteria	JORC Code explanation	Commentary
	misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All new and relevant data have been reported.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 A full review of the results to date will be undertaken prior to any future programs being executed.