ASX RELEASE 5 June 2025

Results from ground geophysics and auger sampling confirm multiple priority targets at King Kong gold prospect. +5,000m drilling program set to commence

- Desert Metals has completed and processed a 19-line, 27.5-line kilometre dipole-dipole induced polarisation (DDIP) ground geophysics program at the King Kong prospect on the Adzope permit in southern Côte d'Ivoire
- Three-dimensional processing of DDIP data, when combined with previous ground geophysics and surface sampling, has highlighted and confirmed numerous drill targets throughout the +3.4km long King Kong gold corridor for immediate diamond drilling
- Results from the first phase of 233 first-pass auger holes for 2,831m provide further information for the upcoming diamond drill program at King Kong
- Diamond drilling to commence in **June 2025** with **+5,000m** of drilling planned in stages

Desert Metals Limited (ASX: DM1) ("**Desert Metals**" or "**the Company**") is pleased to report encouraging results from recent geophysical and geochemical exploration activities at the King Kong prospect, in the northeastern portion of its Adzope Gold Project in southern Côte d'Ivoire.

The results from a **19-line**, **27.5-line kilometre** dipole-dipole induced polarisation (**DDIP**) survey, alongside assays from a **233-hole** phase-one auger drilling program totalling **2,831m** and existing data, have confirmed the presence of multiple high-priority gold targets along a **+3.4km mineralised corridor**. These targets are being ranked for the upcoming diamond drilling program.

These recent programs were designed to refine and prioritise targets ahead of the next phase of diamond drilling, scheduled to commence in **June 2025**. The integration of this new data with previous geophysical and geochemical work, including the maiden diamond drilling campaign completed in November 2024, has significantly enhanced the Company's understanding of the structural and lithological controls on gold mineralisation in the region.

Desert Metals Managing Director Stephen Ross said:

"Following a comprehensive analysis of the three-dimensional DDIP survey data, integrated with surface GAIP and GMAG surveys and recent auger sampling results, we have identified **multiple high-priority gold targets for immediate drilling** across the entire prospective +3.4km King Kong gold corridor. The correlation of these geophysical and geochemical datasets along with our previous significant drill intercepts, including **17m at 7.45g/t gold** and **13m at 1.64g/t gold**, located 1.4km apart within the same structural trend, provides compelling evidence for the gold potential of our upcoming +5,000m drilling program scheduled to commence in June 2025."

DESERT

METALS

Limited

Geophysical data processing and auger results

Desert Metals engaged independent consultant **Resource Potentials Pty Ltd** to process and interpret the DDIP data in conjunction with:

- Reprocessing of gradient array induced polarisation (GAIP) and ground-based magnetic intensity (GMAG) geophysical data collected in previous geophysical programs (see ASX Announcement 28 November 2024); and
- 2. Integration of surface geochemical datasets including the recent phase 1 auger program. This auger drilling returned geochemical anomalies across the King Kong corridor, validating targets previously defined by surface soil and grab sampling (see Appendix 1).

The **reprocessed GAIP results** identified chargeability and resistivity anomalies that may reflect sulphide-bearing silicified vein systems, which are key indicators of potential gold mineralisation in the region. The **reprocessed GMAG data** revealed magnetic trends and discrete magnetic highs indicative of magnetite or pyrrhotite accumulations, which are often associated with gold systems in the region.

The DDIP processing when analysed in conjunction with the previous ground GAIP and GMAG programs, has delineated multiple high-priority gold targets including a prominent low-resistivity (conductive) bedrock anomaly along strike and between two previously reported high-grade gold intercepts; hole 24ADDD006, which returned **13m at 1.64g/t gold** and, hole 24ADDD007 which returned **17m at 7.5g/t gold**, including **5m at 23.1g/t gold** (see **ASX Announcement 10 December 2024**). This zone is interpreted as a potentially +1.4km long gold-mineralised fault or shear structure and represents a compelling drill target. See Figure 1.

Within this interpreted 1.4km gold-mineralised fault or shear structure, two separate target areas have been identified (see **Figure 1**). **Target zone A** is defined in this case by a strong positive chargeability anomaly coincidental with a strong resistivity anomaly that lies on the margin of a sharp magnetic gradient. All auger lines in Target Zone A returned strong gold anomalies, with **10 holes** returning maximum gold values greater than or equal to **100ppb gold**.

Target Zone B is along strike from Target Zone A and is host to some hard rock artisanal pits. It lies on the margin of a moderate chargeability anomaly coincidental with a conductivity high, possibly indicative of a lithological or structural break. **Six auger holes** returned maximum gold values greater than or equal to **100ppb gold**, with a peak value of **980ppb gold**. A large north-south oriented structure separates Target Zones A and B.

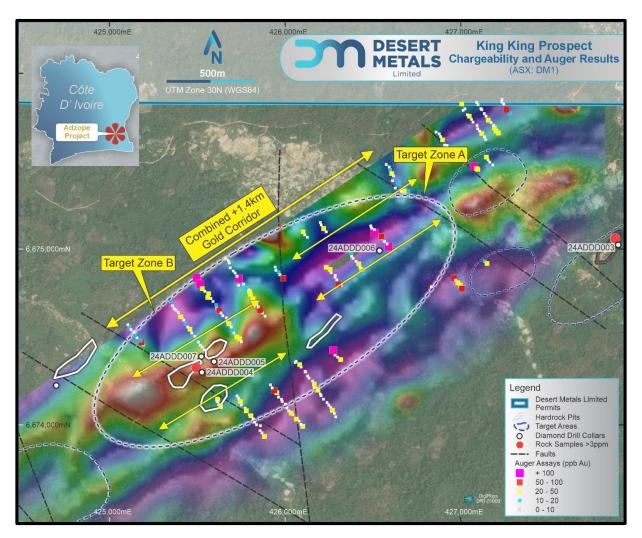


Figure 1 – Surface chargeability, auger results and drill hole target areas.

Note that chargeability is represented as contours with redder colours equating to greater chargeability. The background grid shows conductivity, which is the inverse of resistivity. Thus, blue colours represent conductivity lows or resistivity highs. Chargeable rocks can be indicative of the presence of (gold-bearing) disseminated sulphide minerals such as pyrite, whilst resistive rocks can be indicative of quartz veining and/or silicification

In a regional context, the distinct **+3.4km long coincident geophysical and geochemical anomaly** at King Kong (see **Figure 2**) sits on a major northeast-southwest structural trend within the Birimian greenstone belt, a prolific geological setting known to host several significant gold deposits further north in Ghana.

Figure 2 – DDIP Sections, auger results and drill hole target areas.

Note that chargeability is shown in a series of two-dimensional depth slices derived from inversions of the DDIP survey. The dipole-dipole inversions also define an additional parallel trend to the southeast, at surface and at depth, that requires future drill testing

King Kong drilling

Desert Metals is now finalising preparations for a **+5,000m diamond drilling campaign** targeting high-priority anomalies identified through the DDIP, surface geophysics programs and auger results. This campaign is expected to commence in **June 2025**, focusing on:

- Testing the continuity and scale of mineralisation along the +3.4km King Kong gold corridor;
- Drilling along newly defined geophysical trends and resistivity anomalies; and
- Expanding on significant intercepts from the November 2024 maiden drill program, including:
 - i. 17m at 7.5g/t Au; and
 - ii. 13m at 1.64g/t Au, located 1.4km apart on the same interpreted structure.

Local drilling company, Easy Drilling SARL, is completing the program using a man-portable hydraulic **Rock-800 diamond drill rig**. Drilling will be undertaken using a triple-tube in the oxide layer to ensure good recoveries and NQ width holes down to the target depths of between **120m and 200m**. The Rock-800 has the capability to drill to a total depth of 800m and all holes will be surveyed downhole.

The diamond drill core will be submitted for gold assay using the Chrysos[™] PhotonAssay technique at Intertek Ghana.

This Announcement has been approved for release by the Board of Desert Metals Limited

For further information contact:

Stephen Ross	Kristin Rowe - NWR Communications
Managing Director	Investor Relations

P +61 8 9383 9997 E stephen.ross@desertmetals.com.au P +61 0404 889 896 E kristin@nwrcommunications.com.au

About Desert Metals Limited

Desert Metals Limited is an ASX-listed (ASX:DM1) gold exploration and development company. DM1 has the right to earn a majority interest under low-cost joint venture arrangements in three gold projects covering 1,074km² of granted mineral permits and permit applications in Côte d'Ivoire, West Africa. DM1 currently owns 51% of the Tengrela South project 30km south of the operating Sissingué gold mine and is earning 80% of the highly prospective Adzope gold project in the south of the country.

Competent Persons Statement

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Stephen Ross, a competent person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Ross has a minimum of five years' experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves. Mr Ross is a related party of the Company, being a Director, and holds securities in the Company. Mr Ross has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the Exploration Results information included in this report from previous Company announcements as referenced in the body of this announcement and further confirms that all material assumptions underpinning the exploration results contained in those market releases continue to apply and have not materially changed.

Disclaimer

Some of the statements appearing in this announcement may be in the nature of forward-looking statements. You should be aware that such statements are only predictions and are subject to inherent risks and uncertainties. Those risks and uncertainties include factors and risks specific to the industries in which DM1 operates and proposes to operate as well as general economic conditions, prevailing exchange rates and interest rates and conditions in the financial markets, among other things. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement. No forwardlooking statement is a guarantee or representation as to future performance or any other future matters, which will be influenced by several factors and subject to various uncertainties and contingencies, many of which will be outside DM1's control. DM1 is not obligated to update publicly or release any revisions to these forwardlooking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events. No representation or warranty, express or implied, is made regarding the fairness, accuracy, completeness or correctness of the information, opinions or conclusions contained in this announcement. To the maximum extent permitted by law, none of DM1, its directors, employees, advisors, or agents, nor any other person, accepts any liability for any loss arising from using the information contained in this announcement. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as at the date of this announcement.

This announcement is not an offer, invitation or recommendation to subscribe for, or purchase securities by DM1. Nor does this announcement constitute investment or financial product advice (nor tax, accounting, or legal advice) and is not intended to be used for the basis of making an investment decision. Investors should obtain their own advice before making any investment decision.

Appendix 1 – King Kong auger program significant intercepts

Hole ID	UTM E	UTM N	RL	Length	From	Interval	Grade
			m	m	m	m	g/t Au
25ADAG0003	425177	674479	138	11	3	3	0.15
25ADAG0009	425104	674570	101	11	3	3	0.11
25ADAG0010	425540	674426	116	13	0	3	0.11
and	425540	674426	116	13	3	3	0.14
25ADAG0011	425527	674442	114	12	0	3	0.14
25ADAG0013	425506	674470	92	13	0	3	0.16
25ADAG0015	425485	674503	106	13	0	3	0.11
25ADAG0024	425378	674653	111	12	0	3	0.4
25ADAG0025	425368	674661	113	18	6	3	0.24
25ADAG0027	425348	674702	115	12	3	3	0.31
25ADAG0028	425497	674836	124	10	6	3	0.14
and	425497	674836	124	10	9	1	0.27
25ADAG0030	425516	674801	121	12	11	1	0.18
25ADAG0035	425577	674719	145	12	3	3	0.1
25ADAG0048	425724	674500	122	12	0	3	0.14
25ADAG0050	425750	674473	108	13	3	3	0.1
25ADAG0053	425857	674653	110	12	0	3	0.98
25ADAG0054	425847	674671	113	14	0	3	0.35
25ADAG0059	425797	674757	120	12	0	3	0.22
and	425797	674757	120	12	6	3	0.12
25ADAG0064	425737	674832	120	12	3	3	0.12
and	425737	674832	120	12	9	2	0.12
and	425737	674832	120	12	11	1	0.21
25ADAG0067	425704	674875	107	12	0	3	0.11
and	425704	674875	107	12	3	3	0.26
25ADAG0069	425660	674947	127	11	0	3	0.83
and	425660	674947	127	11	3	3	0.47
25ADAG0074	425963	674868	102	12	3	3	0.34
25ADAG0075	425970	674854	102	12	0	3	0.12
25ADAG0076	425989	674833	111	15	0	3	0.11
25ADAG0078	426302	674799	127	12	0	3	0.22
25ADAG0079	426294	674825	126	15	0	3	0.1
25ADAG0080	426284	674840	119	16	0	3	0.14
25ADAG0084	426234	674896	96	12	9	2	0.47
25ADAG0085	426447	674867	99	15	3	3	0.1

Hole ID	UTM E	UTM N	RL m	Length m	From m	Interval m	Grade g/t Au
25ADAG0086	426434	674884	101	16	9	3	0.1
25ADAG0093	426508	675092	97	12	0	3	0.11
and	426508	675092	97	12	3	3	0.23
and	426508	675092	97	12	6	3	0.25
and	426508	675092	97	12	9	2	0.39
and	426508	675092	97	12	11	1	0.17
25ADAG0094	426508	675110	92	14	0	3	0.12
25ADAG0104	426589	675013	109	12	11	1	0.13
25ADAG0108	426550	675072	93	9	0	3	0.11
and	426550	675072	93	9	3	3	0.11
25ADAG0122	427260	675794	126	12	0	3	0.12
25ADAG0127	427200	675672	137	15	9	3	0.1
25ADAG0130	427172	675720	127	10	3	3	0.17
25ADAG0131	427156	675733	123	12	3	3	0.31
and	427156	675733	123	12	6	3	0.23
25ADAG0139	427134	675639	131	12	9	2	0.1
25ADAG0152	426877	675655	119	10	0	3	0.24
25ADAG0157	427182	675478	119	10	3	3	0.46
25ADAG0159	427155	675507	125	15	6	3	0.12
25ADAG0161	427075	675470	115	12	0	3	0.11
and	427075	675470	115	12	9	2	0.95
and	427075	675470	115	12	11	1	0.12
25ADAG0162	427090	675457	111	14	0	3	0.21
25ADAG0177	426091	674329	107	12	6	3	0.26
25ADAG0185	426186	674197	118	10	3	3	0.12
25ADAG0196	426090	674003	128	12	6	3	0.12
and	426090	674003	128	12	9	2	0.14
25ADAG0207	425938	674196	112	10	6	3	0.44
25ADAG0209	425916	674228	110	12	0	3	0.28
25ADAG0215	425622	674115	111	12	0	3	0.17
25ADAG0225	426273	674425	114	12	11	1	0.12
25ADAG0229	426983	674809	91	13	9	3	0.74
25ADAG0231	427006	674775	96	11	6	3	0.14
and	427006	674775	96	11	9	1	0.1
and	427006	674775	96	11	10	1	0.1
25ADAG0233	427149	674918	103	10	0	3	0.13

Appendix 2 – King Kong Auger Hole Collar Locations

Hole ID	UTM East	UTM North	RL m	Depth m
25ADAG0001	425193	674455	95	13
25ADAG0002	425181	674469	103	10
25ADAG0003	425177	674479	138	11
25ADAG0004	425156	674495	94	15
25ADAG0005	425145	674509	90	12
25ADAG0006	425140	674527	94	13
25ADAG0007	425122	674542	103	13
25ADAG0008	425113	674558	136	12
25ADAG0009	425104	674570	101	11
25ADAG0010	425540	674426	116	13
25ADAG0011	425527	674442	114	12
25ADAG0012	425517	674453	110	12
25ADAG0013	425506	674470	92	13
25ADAG0014	425497	674488	102	13
25ADAG0015	425485	674503	106	13
25ADAG0016	425468	674523	106	11
25ADAG0017	425458	674544	107	13
25ADAG0018	425445	674557	112	13
25ADAG0019	425433	674574	123	13
25ADAG0020	425423	674596	119	13
25ADAG0021	425413	674610	114	13
25ADAG0022	425405	674615	107	11
25ADAG0023	425392	674639	110	13
25ADAG0024	425378	674653	111	12
25ADAG0025	425368	674661	113	18
25ADAG0026	425358	674678	117	13
25ADAG0027	425348	674702	115	12
25ADAG0028	425497	674836	124	10
25ADAG0029	425509	674815	121	12
25ADAG0030	425516	674801	121	12
25ADAG0031	425528	674775	142	12
25ADAG0032	425542	674760	146	13
25ADAG0033	425564	674746	143	13
25ADAG0034	425559	674725	135	12
25ADAG0035	425577	674719	145	12

Hole ID	UTM East	UTM North	RL m	Depth m
25ADAG0036	425589	674702	138	12
25ADAG0037	425607	674682	132	15
25ADAG0038	425610	674663	110	11
25ADAG0039	425624	674650	114	11
25ADAG0040	425634	674637	114	11
25ADAG0041	425645	674621	116	11
25ADAG0042	425665	674609	121	12
25ADAG0043	425670	674585	123	12
25ADAG0044	425680	674575	120	13
25ADAG0045	425693	674557	120	12
25ADAG0046	425702	674539	117	12
25ADAG0047	425708	674523	120	12
25ADAG0048	425724	674500	122	12
25ADAG0049	425740	674490	120	13
25ADAG0050	425750	674473	108	13
25ADAG0051	425885	674618	110	12
25ADAG0052	425871	674637	118	15
25ADAG0053	425857	674653	110	12
25ADAG0054	425847	674671	113	14
25ADAG0055	425839	674683	114	12
25ADAG0056	425833	674702	110	10
25ADAG0057	425817	674717	110	14
25ADAG0058	425802	674742	116	12
25ADAG0059	425797	674757	120	12
25ADAG0060	425792	674768	120	12
25ADAG0061	425777	674778	124	12
25ADAG0062	425763	674800	114	12
25ADAG0063	425734	674794	132	12
25ADAG0064	425737	674832	120	12
25ADAG0065	425726	674845	105	12
25ADAG0066	425715	674864	107	12
25ADAG0067	425704	674875	107	12
25ADAG0068	425687	674893	120	10
25ADAG0069	425660	674947	127	11
25ADAG0070	425676	674934	130	11
25ADAG0071	425682	674921	125	9
25ADAG0072	425943	674898	97	15

Hole ID	UTM East	UTM North	RL m	Depth m
25ADAG0073	425947	674879	96	12
25ADAG0074	425963	674868	102	12
25ADAG0075	425970	674854	102	12
25ADAG0076	425989	674833	111	15
25ADAG0077	426320	674793	125	12
25ADAG0078	426302	674799	127	12
25ADAG0079	426294	674825	126	15
25ADAG0080	426284	674840	119	16
25ADAG0081	426285	674850	126	13
25ADAG0082	426261	674866	118	17
25ADAG0083	426256	674884	117	15
25ADAG0084	426234	674896	96	12
25ADAG0085	426447	674867	99	15
25ADAG0086	426434	674884	101	16
25ADAG0087	426426	674899	102	13
25ADAG0088	426419	674916	91	12
25ADAG0089	426403	674930	110	12
25ADAG0090	426386	674948	107	12
25ADAG0091	426378	674959	107	12
25ADAG0092	426373	674975	108	12
25ADAG0093	426508	675092	97	12
25ADAG0094	426508	675110	92	14
25ADAG0095	426492	675119	93	14
25ADAG0096	426487	675132	100	12
25ADAG0097	426219	675117	86	13
25ADAG0098	426205	675137	88	16
25ADAG0099	426200	675151	88	10
25ADAG0100	426126	675067	94	12
25ADAG0101	426111	675081	94	12
25ADAG0102	426102	675098	88	10
25ADAG0103	426234	675098	84	10
25ADAG0104	426589	675013	109	12
25ADAG0105	426580	675029	105	10
25ADAG0106	426565	675043	103	12
25ADAG0107	426552	675059	83	10
25ADAG0108	426550	675072	93	9
25ADAG0109	426575	675481	98	12

Hole ID	UTM East	UTM North	RL m	Depth m
25ADAG0110	426592	675467	98	15
25ADAG0111	426598	675450	96	10
25ADAG0112	426606	675430	100	10
25ADAG0113	426617	675416	100	12
25ADAG0114	426611	675389	92	12
25ADAG0115	426644	675374	93	11
25ADAG0116	426660	675328	83	15
25ADAG0117	426679	675330	57	13
25ADAG0118	426699	675330	87	16
25ADAG0119	426627	675347	87	16
25ADAG0120	427279	675771	125	12
25ADAG0121	427266	675787	126	12
25ADAG0122	427260	675794	126	12
25ADAG0123	427244	675825	117	12
25ADAG0124	427232	675836	123	12
25ADAG0125	427234	675851	123	12
25ADAG0126	427213	675660	133	15
25ADAG0127	427200	675672	137	15
25ADAG0128	427191	675689	134	12
25ADAG0129	427187	675705	137	10
25ADAG0130	427172	675720	127	10
25ADAG0131	427156	675733	123	12
25ADAG0132	427143	675756	125	12
25ADAG0133	427133	675771	119	12
25ADAG0134	427119	675793	123	12
25ADAG0135	427114	675799	113	12
25ADAG0136	427098	675821	114	10
25ADAG0137	427090	675834	116	12
25ADAG0138	427141	675623	134	12
25ADAG0139	427134	675639	131	12
25ADAG0140	427119	675657	130	12
25ADAG0141	427107	675671	131	10
25ADAG0142	427096	675684	125	12
25ADAG0143	427092	675703	123	12
25ADAG0144	427069	675722	118	12
25ADAG0145	427060	675738	121	15
25ADAG0146	427048	675756	118	19

Hole ID	UTM East	UTM North	RL m	Depth m
25ADAG0147	427037	675764	113	15
25ADAG0148	427013	675789	118	15
25ADAG0149	427023	675798	119	19
25ADAG0150	427005	675825	113	18
25ADAG0151	426859	675665	120	12
25ADAG0152	426877	675655	119	10
25ADAG0153	426885	675640	110	12
25ADAG0154	426896	675621	108	10
25ADAG0155	426907	675592	105	10
25ADAG0156	426922	675589	108	17
25ADAG0157	427182	675478	119	10
25ADAG0158	427165	675494	120	13
25ADAG0159	427155	675507	125	15
25ADAG0160	427145	675523	124	12
25ADAG0161	427075	675470	115	12
25ADAG0162	427090	675457	111	14
25ADAG0163	427096	675453	112	12
25ADAG0164	425726	674165	121	17
25ADAG0165	425735	674151	119	15
25ADAG0166	425745	674133	98	10
25ADAG0167	425750	674114	111	14
25ADAG0168	425772	674095	112	12
25ADAG0169	425779	674080	120	12
25ADAG0170	425796	674057	127	9
25ADAG0171	425805	674052	122	12
25ADAG0172	425818	674035	123	10
25ADAG0173	425826	674016	123	12
25ADAG0174	425837	674001	128	9
25ADAG0175	425859	673995	127	10
25ADAG0176	426082	674343	99	12
25ADAG0177	426091	674329	107	12
25ADAG0178	426113	674304	108	12
25ADAG0179	426116	674301	112	10
25ADAG0180	426128	674278	114	12
25ADAG0181	426136	674266	115	10
25ADAG0182	426156	674249	118	9
25ADAG0183	426166	674232	118	10

Hole ID	UTM East	UTM North	RL m	Depth m
25ADAG0184	426165	674214	115	12
25ADAG0185	426186	674197	118	10
25ADAG0186	426200	674175	119	11
25ADAG0187	426204	674166	117	12
25ADAG0188	426218	674146	123	10
25ADAG0189	426238	674127	121	11
25ADAG0190	426248	674113	123	10
25ADAG0191	426259	674099	122	11
25ADAG0192	426269	674083	131	11
25ADAG0193	426280	674065	120	10
25ADAG0194	426288	674046	125	12
25ADAG0195	426100	673992	115	10
25ADAG0196	426090	674003	128	12
25ADAG0197	426079	674022	128	11
25ADAG0198	426063	674033	129	13
25ADAG0199	426043	674058	126	12
25ADAG0200	426034	674067	130	11
25ADAG0201	426020	674079	126	12
25ADAG0202	426010	674096	114	10
25ADAG0203	426001	674118	109	10
25ADAG0204	425979	674145	114	11
25ADAG0205	425962	674158	114	12
25ADAG0206	425952	674183	113	14
25ADAG0207	425938	674196	112	10
25ADAG0208	425926	674210	112	10
25ADAG0209	425916	674228	110	12
25ADAG0210	426057	674355	114	12
25ADAG0211	426062	674362	109	10
25ADAG0212	425983	674133	112	10
25ADAG0213	425615	674146	111	10
25ADAG0214	425615	674132	108	14
25ADAG0215	425622	674115	111	12
25ADAG0216	425632	674105	115	12
25ADAG0217	425637	674097	118	12
25ADAG0218	425857	673967	118	10
25ADAG0219	425868	673955	122	12
25ADAG0220	425882	673934	125	12

Hole ID	UTM East	UTM North	RL m	Depth m
25ADAG0221	426316	674371	119	12
25ADAG0222	426299	674385	120	11
25ADAG0223	426284	674397	123	11
25ADAG0224	426286	674409	123	12
25ADAG0225	426273	674425	114	12
25ADAG0226	426832	674786	87	12
25ADAG0227	426961	674835	84	12
25ADAG0228	426970	674823	85	10
25ADAG0229	426983	674809	91	13
25ADAG0230	426997	674795	95	9
25ADAG0231	427006	674775	96	11
25ADAG0232	427136	674931	102	12
25ADAG0233	427149	674918	103	10
TOTAL				2,831m

JORC Code, 2012 Edition – Table 1

Section 1 Sampling	Techniques and Data -	Dipole Dipole Survey
--------------------	-----------------------	----------------------

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	The survey consists of nineteen lines totaling 27.5 line km's of dipole-dipole induced polarization. Lines were oriented NW-SE and were typically spaced 250m apart. Dipole-spacing was 25m.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Not Applicable.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples.	Not Applicable.

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Not Applicable.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Not Applicable.
<i>Quality of assay data and laboratory tests</i>	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable 	Not Applicable.

Criteria	JORC Code explanation	Commentary
	levels of accuracy (i.e. lack of bias) and precision have been established.	
<i>Verification of sampling and assaying</i>	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Not Applicable.
Location of data	Accuracy and quality of surveys used to	All coordinates were recorded using a
points	locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	handheld Garmin GPS, accurate to within 3m. The grid system used was WGS84 UTM Zone 30N. Topographic control is considered adequate.
Data spacing	Data spacing for reporting of Exploration	Not Applicable.
and distribution	Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	
<i>Orientation of data in relation to geological structure</i>	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The dipole-dipole lines were oriented NW- SE which is perpendicular to the regional structural trend as determined from regional airborne magnetics, ground magnetics, and the geological mapping of artisanal pits.
Sample security	<i>The measures taken to ensure sample security.</i>	Not Applicable.
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	The data was reviewed and processed by Perth-based Resource Potentials Pty Ltd.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data – Auger Sampling

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	Auger drill samples were collected as 1m samples and submitted as 3m composite samples, with end-of-hole samples submitted as 1m intervals. The 1m samples were taken directly from the auger rig and laid-out on the ground in the order of drilling and manually composited by way of a scoop, with an equal amount of material taken from each metre-interval comprising the composite sample. QAQC samples, consisting of certified blanks (1% of samples), standards (1% of samples) and field duplicates (1% of samples) were inserted into the sample sequence.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Auger drilling was carried out by GEO- EXPLO SERVICES SARL using industry- standard techniques and procedures. The rig used was a traditional auger drill rig.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples.	No significant sampling issues were encountered. Given the nature of the drilling technique and the sampling technique used, and that the results are intended to guide future, higher resolution and higher quality

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	drilling programs, drill sample recovery is less of an issue and was not noted.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	Each 1m interval was geologically logged by an experienced, qualified company geologist, noting lithology, alteration and mineralization / veining.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	Auger drill samples were collected as 1m samples and submitted as 3m composite samples, with end-of-hole samples submitted as 1m intervals. The 1m samples were taken directly from the auger rig and laid-out on the ground in the order of drilling and manually composited by way of a scoop, with an equal amount of material taken from each metre-interval comprising the composite sample.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	QAQC samples consisting of certified blanks (1% of samples), standards (1% of samples) and field duplicates (1% of samples) were inserted into the sample run. Samples were assayed using the Photon Assay technique at Intertek Tarkwa (Ghana) which uses 500g of sample material, ensuring excellent sample representativity and minimizing the nugget affect. The Photon Assay pots were loaded by Intertek Tarkwa (Ghana) after receiving the samples sent by Intertek Yamaoussoukro (Cote d'Ivoire). The limited physical sample preparation required by the Photon Assay technique also minimizes the risk of contamination at the sample preparation stage.
<i>Quality of assay data and laboratory tests</i>	<i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i>	Assaying was undertaken by Intertek Tarkwa (Ghana) by the Photon Assay method in accordance with standard industry techniques and procedures. In addition to

Criteria	JORC Code explanation	Commentary
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	the company QAQC samples, the laboratory also inserted their own QAQC samples. No issues with the assay data and QAQC samples were noted. The Photon Assay technique uses a 500g sample charge ensuring excellent sample representativity and minimizing the nugget effect. Furthermore, the limited physical sample preparation required by the Photon Assay technique also minimizes the risk of contamination at the sample preparation stage.
<i>Verification of sampling and assaying</i>	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Both the company and laboratory QAQC samples were within acceptable tolerance and no issues were noted with the quality of the assay data. Sampling at the machine was of a high quality in relation to the nature of the drilling method. Rods were kept as clean as possible, and the sampling scoops were frequently cleaned.
<i>Location of data points</i>	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All drill collars were recorded using a handheld Garmin GPS, accurate to within 3m. All holes were drilled vertically. The depth of the samples was recorded, thus the location of every sample is well constrained in X, Y and Z space.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Auger drillholes were planned as first-pass drilling to further test soil and gradient array IP anomalies. Hole spacing was typically 20m on 200m- spaced lines oriented NW-SE. Holes were typically drilled to a depth of 14m, but this varied as a function of the thickness of the overburden and laterite. All holes were drilled to ensure that at least 1 sample was taken from <i>in situ</i> saprolite, but typically 2 or more samples were taken from <i>in situ</i> saprolite per hole.
<i>Orientation of data in relation to geological structure</i>	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drill lines were oriented NW-SE in order to be perpendicular to the main regional strike and gradient array IP anomaly trends.

Criteria	JORC Code explanation	Commentary
	<i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i>	
Sample security	<i>The measures taken to ensure sample security.</i>	All drill samples were securely kept on camp and sent weekly to Intertek Yamoussoukro by a company vehicle.
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	Drilling and sampling was conducted in accordance with industry-standard procedures and was observed by the company's Exploration Manager to be of a high standard. Likewise, the assay data is considered to be of a very high quality given the analytical technique used.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The 229km ² Adzope Concession (PR-960) was granted on 26th June 2024 to Ivorian company, African Ressources SARL. DM1, through its 100% owned entity CDI Minerals Pty Ltd entered into a JV with the permit holder on the 5 June 2023. DM1 can earn up to 80%. There are no impediments to working in the area. Compensation is paid to local land holders for tree/crop disturbance and local villagers are regularly engaged to provide a range of field services to DM1.
<i>Exploration done by other parties</i>	Acknowledgment and appraisal of exploration by other parties.	Unidentified companies have conducted minor historical work in the past. However, none of that data (thought to be stream sediment sampling) has been located to date. The government also has some limited geological reports on the area, and regional stream sediment sample data largely carried- out in the 1950's and 1960's.

Criteria	JORC Code explanation	Commentary
Geology	<i>Deposit type, geological setting and style of mineralisation.</i>	The Adzope concession (PR-0960) is located on regional-scale NE-SW oriented structure that appears to be a parallel extension of the Sefwi greenstone belt in neighbouring Ghana, home to the Ahafo camp goldmines of Newmont, endowed with more than 15 million ounces of gold reserves. Host rocks at Adzope are largely fine-grained metasediments and metavolcanoclastics, with gold hosted in quartz veins and in the vein selvedges.
<i>Drillhole Information</i>	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: i. easting and northing of the drillhole collar ii. elevation or RL (Reduced Level - elevation above sea level in metres) of the drillhole collar iii. dip and azimuth of the hole iv. downhole length and interception depth v. hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No historical drilling has ever been performed on this permit to the knowledge of DM1. Most recently, the company conducted its maiden 8-hole diamond drilling program on the permit. DM1 maintains a database containing all recorded geological and drillhole meta-data.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cutoff grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	DM1 gold assay were checked in relation to recent underlying soil geochemistry results and a field inspection.
Relationship between	<i>These relationships are particularly important in the reporting of Exploration Results.</i>	Holes were drilled vertically on lines oriented NW-SE in order to be perpendicular to the

Criteria	JORC Code explanation	Commentary
<i>mineralisation widths and intercept lengths</i>	If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known').	main regional strike and gradient array IP anomaly trends. All intercepts are downhole lengths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	Appropriate diagrams and tabulations relevant to material results are included in the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	No historical drill data is available in the King Kong or on the Adzope permit to provide more context. An independent third party manages a fully integrated database.
<i>Other substantive exploration data</i>	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Auger results are shown in figures within the report relative to IP and ground magnetic surveys, and soil geochemistry assays.
Further works	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	A +5,000m diamond drilling program is to commence in mid-June 2025 to drill-test the anomalies presented within this report.